首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Complexity of the cold acclimation response in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Insects can increase their resistance to cold stress when they are exposed to non-lethal conditions prior to the stress; these plastic responses are normally described only in terms of immediate effects on mortality. Here we examine in Drosophila melanogaster the short- and longer-term effects of different conditions on several measures of cold resistance, but particularly chill coma recovery. Short-term exposure to sublethal temperature (cold hardening) did not decrease chill coma recovery times even though it decreased mortality. Exposure to 12 degrees C for 2 days (acclimation) decreased chill coma recovery times for a range of stressful temperatures when flies were cultured at 25 degrees C, but did not usually affect recovery times when flies were cultured at 19 degrees C. In contrast, 2-day exposure to 12 degrees C decreased mortality regardless of rearing temperature. Rearing at 19 degrees C decreased mortality and chill coma recovery time relative to rearing at 25 degrees C. Acclimation increased the eclosion rate of eggs from stressed females, but did not affect development time or size of the offspring. These results indicate that plastic responses to cold in D. melanogaster are complex when resistance is scored in different ways, and that effects can extend across generations.  相似文献   

2.
Carbon dioxide gas is used as an insect anesthetic in many laboratories, despite recent studies which have shown that CO(2) can alter behavior and fitness. We examine the effects of CO(2) and anoxia (N(2)) on cold tolerance, measuring the rapid cold-hardening (RCH) response and chill coma recovery in Drosophila melanogaster. Short exposures to CO(2) or N(2) do not significantly affect RCH, but 60 min of exposure negates RCH. Exposure to CO(2) anesthesia increases chill coma recovery time, but this effect disappears if the flies are given 90 min recovery in air before chill coma induction. Flies treated with N(2) show a similar pattern, but require significantly longer chill coma recovery times even after 90 min of recovery from anoxia. Our results suggest that CO(2) anesthesia is an acceptable way to manipulate flies before cold tolerance experiments (when using RCH or chill coma recovery as a measure), provided exposure duration is minimized and recovery is permitted before chill coma induction. However, we recommend that exposure to N(2) not be used as a method of anesthesia for chill coma studies.  相似文献   

3.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

4.
Cold resistance in insects has traditionally been measured in terms of survival following a stress, but alternative methods are increasingly being used because of their relevance to the ecology of organisms and their utility in characterizing variation among species, populations and individuals. One such method capable of discriminating among Drosophila species and conspecific Drosophila populations from different environments is adult chill coma recovery time, the time taken for adults to become active again after being knocked down by a cold stress. Here we characterized the chill coma response of D.melanogaster in detail. Adults were exposed to a range of temperatures and stressful periods prior to measuring recovery. Recovery from chill coma in D.melanogaster was biphasic; as flies were stressed under cooler temperatures, recovery times leveled off and then decreased before sharply increasing again as mortality starts to occur. This biphasic response has previously been observed in D.subobscura where it has a somewhat different shape. A second mechanism therefore acts at relatively lower temperatures to ameliorate the effects of the cold stress. When D.melanogaster were reared at 19 and 25 °C for two generations, the shape of the curve relating temperature to recovery time was similar, but flies from the warmer temperature had longer recovery times and showed responses that leveled off and then decreased at relatively higher temperatures. As exposure time to cold stress was increased, recovery times also increased except at mild stress levels. Chill coma recovery in D.melanogaster is a complex trait and likely to reflect multiple underlying components.  相似文献   

5.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

6.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

7.
To assess the trade‐offs associated with cold and heat tolerance, selection experiments were conducted on the rate of recovery from chill‐ and heat‐coma using Drosophila melanogaster. Flies were treated with cold and heat to induce coma, and those that showed rapid or slow recovery from coma were selected. The lines selected for rapid (or slow) recovery from chill‐coma also showed rapid (slow) recovery from heat‐coma, although such a correlation was not observed in the lines selected for the rate of recovery from heat‐coma. On the other hand, survival after cold was enhanced in both lines selected for rapid and slow recovery from chill‐coma, and survival after heat was enhanced in both lines selected for rapid and slow recovery from heat‐coma. It was assumed that cold and heat treatments to induce coma caused some damages to flies and those that were tolerant to cold or heat were unintentionally selected in the present coma‐based selection. Only a weak trade‐off was observed between survival‐based cold and heat tolerance. On the other hand, developmental time was prolonged and desiccation resistance, walking speed, and longevity were reduced in the lines selected for rapid and slow recovery from chill‐ and/or heat‐coma, suggesting that these resistance and life‐history traits are under trade‐offs with cold and/or heat tolerance. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 72–80.  相似文献   

8.
Abstract.  Low temperature and desiccation stress are thought to be mechanistically similar in insects, and several studies indicate that there is a degree of cross-tolerance between them, such that increased cold tolerance results in greater desiccation tolerance and vice versa . This assertion is tested at an evolutionary scale by examining basal cold tolerance, rapid cold-hardening (RCH) and chill coma recovery in replicate populations of Drosophila melanogaster selected for desiccation resistance (with controls for both selection and concomitant starvation) for over 50 generations. All of the populations display a RCH response, and there is no effect of selection regime on RCH or basal cold tolerance, although there are differences in basal cold tolerance between sampling dates, apparently related to inter-individual variation in development time. Flies selected for desiccation tolerance recover from chill coma slightly, but significantly, faster than control and starvation-control flies. These findings provide little support for cross-tolerance between survival of near-lethal cold and desiccation stress in D. melanogaster .  相似文献   

9.
10.
As a result of acclimation populations of long-lived ectotherms should display lowered ability to counter cold stress in warmer periods of active season, and increased resistance in colder ones. We tested this proposition by investigating dynamics of cold resistance in Myrmica ants during most of the active season in two types of habitats. Resistance of ants to knock-down by cold and their rate of recovery after chill coma were expected to be lower in summer.Cooled at a rate of 0.17 °C min−1, the ants showed lower capability to resist knock-down in summer, and a significant lowering in knock-down temperature in response to colder weather both in spring and autumn as confirmed by linear regression against air temperatures. In a more eurytopic species M. rubra the responses were significantly faster in meadow than in forest habitats. However, times of recovery of the ants after 10 min at −3 °C did not change in parallel to air temperatures. Whereas M. rubra from forest habitats took less time to recover in early summer and early autumn, in their conspecifics from meadow habitats the contrary was the case. Regardless of habitat, recoveries tended to be faster in other investigated species, of which M. ruginodis (a forest stenotopic) recovered faster in early summer than later.According to the knock-down data, in warmer months the ants are indeed less resistant to cold stress, whilst the recovery data do not always support the proposition. The contrasting seasonal dynamics of the two measures of low-temperature resistance in field-fresh Myrmica suggest that knock-down (chill coma onset) is a better index of thermal acclimation, whilst the rate of recovery from chill coma is more indicative of interspecific differences and, possibly, behavioural thermoregulation.  相似文献   

11.
When the ambient temperature is lowered to an insect's lower thermal limit, the insect enters into chill coma. Chill coma temperature and chill coma recovery can vary within species as a result of thermal acclimation, although the physiological basis of the onset of chill coma remains poorly understood. The present study investigates how the temperature of acclimation (0, 5, 10, 15 and 20 °C for 2 or 7 days) affects chill coma temperature and oxygen consumption in adult Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). It is hypothesized that the threshold decline in metabolic rate corresponds to the entry into chill coma. Oxygen consumption (as a proxy of metabolism) is measured across the chill coma temperature threshold, and a strong decline in oxygen consumption is expected at entry into chill coma. The acclimation decreases the chill coma temperature significantly from 6.6 ± 1.1 °C in control insects to 3.1 ± 0.7 °C in those acclimated to 10 °C. The change in metabolic rate (Q10) after acclimation to temperatures ranging from 10 to 20 °C is 3.7. Despite acclimation, the metabolic rate of A. diaperinus conforms to Arrhenius kinetics, suggesting that the response of this beetle does not show metabolic compensation. The data suggest the existence of a threshold decline in metabolic rate during cooling that coincides with the temperature at which an insect goes into chill coma.  相似文献   

12.
Extreme temperatures restrict the performance of terrestrial arthropods and variations in low temperatures on a latitudinal scale influence physiological variables. Recovery time from chill coma is a measure of cold tolerance and it is a good index of climatic adaptation. We tested differences in recovery time of the common woodlouse (Porcellio laevis) exposed to different thermal conditions. Individuals were sampled from four different populations in Chile, spanning a latitudinal range of approximately 10 degrees . Significant differences were found in recovery time among experimental temperatures and among populations, but no interaction between these factors. The results of recovery time in P. laevis showed a positive increment with annual mean minimum temperature, indicating that there is geographical variation in recovery time. While body mass presented interpopulational variation, this variation was not associated with thermal variables or latitude. Overall, our results agree with previous studies in the sense that recovery time from chill coma decreases towards high latitudes, and it is independent of taxa, continent and hemisphere.  相似文献   

13.
In organisms with complex life cycles, the adaptive value of thermotolerance depends on life-history timing and seasonal temperature profiles. We illustrate this concept by examining variation in annual thermal environments and thermal acclimation among four geographic populations of the pitcher plant mosquito. Only diapausing larvae experience winter, whereas both postdiapause and nondiapause adults occur only during the growing season. Thus, adults experience transient cold stress primarily during the spring. We show that adult cold tolerance (chill coma recovery) is enhanced in spring-like conditions via thermal acclimation but is unaffected by diapause state. Moreover, adult mosquitoes from northern populations were more cold tolerant than those from southern populations largely because acclimation responses were steeper in the north. In contrast to cold tolerance, there was no significant acclimation of heat tolerance (heat knockdown), and no significant differences in heat tolerance between northern and southern populations. Field temperature data show that because of evolved differences in diapause timing, adult exposure to cold stress is remarkably consistent across geography. This suggests that geographic variation in cold tolerance may not be the result of direct selection on adults. Our results illustrate the importance of the interplay between phenological and thermal adaptation for understanding variation along climatic gradients.  相似文献   

14.
Knowledge regarding the reproductive status of spotted‐wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is of critical importance in predicting potential infestations of this invasive pest, as eggs are laid in ripe or ripening fruit of several commercially important small‐fruit crops. Token environmental stimuli for the induction of reproductive diapause and improved cold tolerance were identified for D. suzukii. Diapause induction was evaluated by assessing, via dissection, the number of mature eggs carried by field‐captured D. suzukii and laboratory‐reared D. suzukii held under various temperature and photoperiod regimes. Egg load decreased over time in females trapped from July to December at sites in Benton County, OR, and Ontario County, NY, both USA, and reached zero eggs by December at all sites. Photoperiods below 14 h of day length led to reduced egg maturation in laboratory‐reared flies held at moderate temperatures (15 or 20 °C). Whereas very few mature eggs were found in females held at 10 °C under short‐ or long‐day photoperiods for several weeks after eclosion, a spontaneous return to ovarian maturity was observed in short‐day‐entrained females after 7 weeks. Diapause termination was investigated by evaluating fecundity in diapausing females returned to optimal environmental conditions. Whereas long‐day‐entrained flies began producing offspring immediately upon return to optimal conditions, short‐day‐entrained flies returned after 1 and 6 weeks at 10 °C were slower to produce offspring than colony flies or short‐day‐entrained flies returned after 7 weeks. Cold tolerance was evaluated by observing chill coma recovery rates after 24 h exposure to ?1 °C. Cold‐acclimated (diapausing) females recovered from chill coma faster than cold‐hardened or unacclimated females.  相似文献   

15.
Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets.  相似文献   

16.
Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12 h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na+] and Na+ content in the first few hours of chilling actually increased. Patterns of Na+ balance suggest that Na+ migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K+] progressed gradually over 12 h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48 h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na+], or [K+] balance during the first 12 h of chilling. Gryllus veletis better maintained balance of Na+ content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species.  相似文献   

17.
Cold tolerance is an important trait directly related to survival and hence fitness. In the present study, the link is addressed between cold tolerance and body size, which is associated with many key fitness traits, at both the intra‐ and interspecific levels. Specifically, chill coma recovery time, as a metric of cold tolerance, is examined in five related flour beetle species (four of them belonging to the genus Tribolium), two additional Tribolium castaneum Herbst populations selected for higher temperatures, and a mutant showing reduced body size. Recovery times are negatively correlated with the species average body size but not within each species. Females usually recover faster than males, although this difference is significant in only a single species, and is unrelated to body size. Repeating the experimental procedure with the same individuals, after 2 days in isolation with a limited amount of food, results in longer recovery times. Therefore, even if cold acclimation takes place, its influence appears to be diminished by the deleterious effects associated with the experimental procedure. Hence, the findings provide evidence for an association between body size and cold tolerance in the genus Tribolium, with larger species recovering faster from chill than smaller species. By contrast, the smalleyed flour beetle Palorus ratzeburgii Wissmann does not follow this pattern. Additionally, a population of T. castaneum selected for the highest temperature takes longer to recover from chill coma, indicating a trade‐off between cold and heat adaptations and not to a cross‐protection effect, as sometimes demonstrated.  相似文献   

18.
Global climate change poses one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the combined effects of the mean and variance of temperature on thermal tolerances, organismal survival, and population growth in Drosophila melanogaster. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that responses to thermal variation (±0° or ±5°C) would depend on the mean temperature (17° or 24°C). Consistent with our prediction, thermal variation enhanced the rate of population growth (r(max)) at a low mean temperature but depressed this rate at a high mean temperature. The interactive effect on fitness occurred despite the fact that flies improved their heat and cold tolerances through acclimation to thermal conditions. Flies exposed to a high mean and a high variance of temperature recovered from heat coma faster and survived heat exposure better than did flies that developed at other conditions. Relatively high survival following heat exposure was associated with low survival following cold exposure. Recovery from chill coma was affected primarily by the mean temperature; flies acclimated to a low mean temperature recovered much faster than did flies acclimated to a high mean temperature. To develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean environmental temperature and the variance of environmental temperature.  相似文献   

19.
CHILL-COMA TOLERANCE, A MAJOR CLIMATIC ADAPTATION AMONG DROSOPHILA SPECIES   总被引:2,自引:1,他引:1  
Abstract.— Most drosophilid species can be classified either as temperate or tropical. Adults of species were submitted to a cold treatment (0°C) and then brought back to ambient temperature. They generally exhibited a chill coma and the time needed to recover was measured. We found in a set of 26 temperate species that recovery was rapid (average 1.8 min, range 0.15–4.9). In contrast, a long recovery time (average 56 min, range 24–120) was observed for 48 tropical species. A few species, like Drosophila melanogaster, are cosmopolitan and can proliferate under temperate and tropical climates. In 9 of 10 such species, slight genetic differences were found: a shorter recovery in temperate than in tropical populations. Comparing physiological data to phylogeny suggests that chill‐coma tolerance has been a recurrent adaptation that is selected for in cold climates but tends to disappear under a permanently warm environment. This major climatic adaptation, evidenced in drosophilids, seems to occur in other insect groups also.  相似文献   

20.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号