首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

2.
Soil organic carbon (SOC) is an important carbon pool susceptible to land‐use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0–30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below‐ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre‐existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2‐eq/MJ). Including modelled LUC‐induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2‐eq/MJ (180 kg CO2‐eq/Mg DM).  相似文献   

3.
Proposed European policy in the agricultural sector will place higher emphasis on soil organic carbon (SOC), both as an indicator of soil quality and as a means to offset CO2 emissions through soil carbon (C) sequestration. Despite detailed national SOC data sets in several European Union (EU) Member States, a consistent C stock estimation at EU scale remains problematic. Data are often not directly comparable, different methods have been used to obtain values (e.g. sampling, laboratory analysis) and access may be restricted. Therefore, any evolution of EU policies on C accounting and sequestration may be constrained by a lack of an accurate SOC estimation and the availability of tools to carry out scenario analysis, especially for agricultural soils. In this context, a comprehensive model platform was established at a pan‐European scale (EU + Serbia, Bosnia and Herzegovina, Croatia, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) using the agro‐ecosystem SOC model CENTURY. Almost 164 000 combinations of soil‐climate‐land use were computed, including the main arable crops, orchards and pasture. The model was implemented with the main management practices (e.g. irrigation, mineral and organic fertilization, tillage) derived from official statistics. The model results were tested against inventories from the European Environment and Observation Network (EIONET) and approximately 20 000 soil samples from the 2009 LUCAS survey, a monitoring project aiming at producing the first coherent, comprehensive and harmonized top‐soil data set of the EU based on harmonized sampling and analytical methods. The CENTURY model estimation of the current 0–30 cm SOC stock of agricultural soils was 17.63 Gt; the model uncertainty estimation was below 36% in half of the NUTS2 regions considered. The model predicted an overall increase of this pool according to different climate‐emission scenarios up to 2100, with C loss in the south and east of the area (involving 30% of the whole simulated agricultural land) compensated by a gain in central and northern regions. Generally, higher soil respiration was offset by higher C input as a consequence of increased CO2 atmospheric concentration and favourable crop growing conditions, especially in northern Europe. Considering the importance of SOC in future EU policies, this platform of simulation appears to be a very promising tool to orient future policymaking decisions.  相似文献   

4.
土地利用变化对土壤有机碳的影响研究进展   总被引:20,自引:0,他引:20  
陈朝  吕昌河  范兰  武红 《生态学报》2011,31(18):5358-5371
土壤有机碳是陆地碳库的重要组成部分,也是当前全球碳循环和全球变化研究的热点。土地利用/覆被变化及土地管理变化通过影响土壤有机碳的储量和分布,进而影响温室气体排放和陆地生态系统的碳通量。研究土地利用变化影响下的土壤有机碳储量及其动态变化规律,有助于加深理解全球气候变化与土地利用变化之间的关系。在阅读国内外有关文献的基础上,分别从土地利用及其管理方式变化的角度,概括了土地利用变化对土壤有机碳的影响过程与机理;针对当前研究的两大类方法,即实验方法和模型方法,分类详细介绍了它们各自的特点以及存在的一些问题。在此基础上,提出今后土地利用变化对土壤有机碳影响研究的发展趋势。  相似文献   

5.
Oil palm (Elaeis guineensis Jacq.) crops are expanding rapidly in the tropics, with implications for the global carbon cycle. Little is currently known about soil organic carbon (SOC) dynamics following conversion to oil palm and virtually nothing for conversion of grassland. We measured changes in SOC stocks following conversion of tropical grassland to oil palm plantations in Papua New Guinea using a chronosequence of plantations planted over a 25‐year period. We further used carbon isotopes to quantify the loss of grassland‐derived and gain in oil palm‐derived SOC over this period. The grassland and oil palm soils had average SOC stocks of 10.7 and 12.0 kg m?2, respectively, across all the study sites, to a depth of 1.5 m. In the 0–0.05 m depth interval, 0.79 kg m?2 of SOC was gained from oil palm inputs over 25 years and approximately the same amount of the original grass‐derived SOC was lost. For the whole soil profile (0–1.5 m), 3.4 kg m?2 of SOC was gained from oil palm inputs with no significant losses of grass‐derived SOC. The grass‐derived SOC stocks were more resistant to decrease than SOC reported in other studies. Black carbon produced in grassfires could partially but not fully account for the persistence of the original SOC stocks. Oil palm‐derived SOC accumulated more slowly where soil nitrogen contents where high. Forest soils in the same region had smaller carbon stocks than the grasslands. In the majority of cases, conversion of grassland to oil palm plantations in this region resulted in net sequestration of soil organic carbon.  相似文献   

6.
Abstract

The prognosis and utility under climate change are presented for two old‐growth, temperate forests in Australia, from ecological and carbon accounting perspectives. The tall open‐forests (TOFs) of south‐western Australia (SWA) are within Australia’s global biodiversity hotspot. The forest management and timber usage from the carbon‐dense old‐growth TOFs of Tasmania (TAS) have a high carbon efflux, rendering it a carbon hotspot. Under climate change the warmer, dryer climate in both areas will decrease carbon stocks directly; and indirectly through changes towards dryer forest types and through positive feedback. Near 2100, climate change will decrease soil organic carbon (SOC) significantly, e.g. by ~30% for SWA and at least 2% for TAS. The emissions from the next 20 years of logging old‐growth TOF in TAS, and conversion to harvesting cycles, will conservatively reach 66(±33) Mt‐CO2‐equivalents in the long‐term – bolstering greenhouse gas emissions. Similar emissions will arise from rainforest SOC in TAS due to climate change. Careful management of old‐growth TOFs in these two hotspots, to help reduce carbon emissions and change in biodiversity, entails adopting approaches to forest, wood product and fire management which conserve old‐growth characteristics in forest stands. Plantation forestry on long‐cleared land and well‐targeted prescribed burning supplement effective carbon management.

Abbreviations: C, carbon; CBS, clearfell, burn and sow; CO2‐e, CO2 equivalents; CWD, coarse woody debris; DOC, dissolved organic carbon; GHG, greenhouse gas; Mt, megatonnes; SOC, soil organic carbon; SWA, south‐western Australia; SWAFR, Southwest Australian Floristic Region; TAS, Tasmania; TOF, tall open‐forest; t‐C ha?1 yr?1, tonnes of carbon per hectare per year  相似文献   

7.
保护性耕作对农田碳、氮效应的影响研究进展   总被引:16,自引:0,他引:16  
作物产量的高低主要取决于土壤肥力,如何保持并提高土壤肥力是确保我国粮食安全和农业可持续发展的重要任务,也是众多学者关注的焦点。土壤有机碳和氮素是评价土壤质量的重要指标,其动态平衡直接影响土壤肥力和作物产量。随着全球气候变化及环境污染问题的愈加突出,农田土壤固碳及提高氮效率成为各界科学家研究的热点。目前,保护性耕作已成为发展可持续农业的重要技术之一,对土壤固碳及氮素的利用具有很大的影响。深入了解保护性耕作对土壤有机碳固持与氮素利用效率提高的影响机制,对于正确评价土壤肥力有着重要意义。但由于气候、土壤及种植制度等条件不一致,关于保护性耕作对农田碳、氮效应结论不一。阐述了国际上保护性耕作对农田系统土壤有机碳含量变化及其分解排放(如CO2和CH4)、氮素变化及其矿化损失(如NH3挥发、N2O排放与氮淋失)和碳氮素相互关系(如C/N层化率)影响的研究进展,并分析了其影响因素和相关机理。尽管国内保护性耕作的研究已进行30 多年,但在土壤有机碳与氮素方面与国外相比依然有较大的差距。保护性耕作对土壤固碳与氮素利用的影响机制,碳素和氮素在土壤-植株-大气系统中的转移变化,及结合农事管理等综合评价其生态效应的研究很少。在此基础上,提出未来我国保护性耕作在土壤有机碳固定和氮素利用方面的重点研究方向:(1)在定位试验基础上进一步探讨保护性耕作对土壤有机碳及氮素利用的影响机制;(2)深入研究土壤有机碳和氮素的相互关系及其对土壤肥力的影响;(3)结合环境保护与土壤可持续管理对保护性耕作农田土壤固碳及氮素高效利用的系统评价研究;(4)加强保护性耕作对农田碳、氮效应的宏观研究,合理评价保护性耕措施下对农田碳、氮综合效应。  相似文献   

8.
R. Lal 《植物科学评论》2003,22(2):151-184
An increase in atmospheric concentration of CO2 from 280?ppmv in 1750 to 367?ppmv in 1999 is attributed to emissions from fossil fuel combustion estimated at 270±30?Pg C and land use change at 136±55?Pg. Of the emissions from land use change, 78±12?Pg is estimated from depletion of soil organic carbon (SOC) pool. Most agricultural soils have lost 50 to 70% of their original SOC pool, and the depletion is exacerbated by further soil degradation and desertification. The restoration of degraded soils, conversion of agriculturally marginal lands to appropriate land use, and the adoption of recommended management practices on agricultural soils can reverse degradative trends and lead to SOC sequestration. Technological options for SOC sequestration on agricultural soils include adoption of conservation tillage, use of manures, and compost as per integrated nutrient management and precision farming strategies, conversion of monoculture to complex diverse cropping systems, meadow-based rotations and winter cover crops, and establishing perennial vegetation on contours and steep slopes. The global potential of SOC sequestration and restoration of degraded/desertified soils is estimated at 0.6 to 1.2?Pg C/y for about 50 years with a cumulative sink capacity of 30 to 60?Pg. The SOC sequestration is a costeffective strategy of mitigating the climate change during the first 2 to 3 decades of the 21st century. While improving soil quality, biomass productivity and enhanced environment quality, the strategy of SOC sequestration also buys us time during which the non-carbon fuel alternatives can take effect.  相似文献   

9.
Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem. We have linked net primary production algorithms, which include the impact of enhanced atmospheric CO2 on plant growth, to the Soil Organic Carbon Resources And Transformations in EcoSystems (SOCRATES) model to develop a SOC map for the North Central Region of the United States between the years 1850 and 2100 in response to agricultural activity and climate conditions generated by the CSIRO Mk2 Global Circulation Model (GCM) and based on the Intergovernmental Panel for Climate Change (IPCC) IS92a emission scenario. We estimate that the current day (1990) stocks of SOC in the top 10 cm of the North Central Region to be 4692 Mt, and 8090 Mt in the top 20 cm of soil. This is 19% lower than the pre-settlement steady state value predicted by the SOCRATES model. By the year 2100, with temperature and precipitation increasing across the North Central Region by an average of 3.9°C and 8.1 cm, respectively, SOCRATES predicts SOC stores of the North Central Region to decline by 11.5 and 2% (in relation to 1990 values) for conventional and conservation tillage scenarios, respectively.  相似文献   

10.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

11.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   

12.
Black soils in Northeast China are characteristic of high soil organic carbon (SOC) density and were strongly influenced by human activities. Therefore, any change in SOC pool of these soils would not only impact the regional and global carbon cycle, but also affect the release and immobilization of nutrients. In this study, we reviewed the research progress on SOC storage, budget, variation, and fertility under different scenarios. The results showed that the organic carbon storage of black soils was 646.2 TgC and the most potential sequestration was 2887.8 g m−2. According to the SOC budget, the net carbon emission of black soils was 1.3 TgC year−1 under present soil management system. The simulation of CENTURY model showed that future climate change and elevated CO2 concentration, especially the increase of precipitation, would increase SOC content. Furthermore, fertilization and cropping sequence obviously influenced SOC content, composition, and allocation among different soil particles. Long-term input of organic materials such as manure and straw renewed original SOC, improved soil structure and increased SOC accumulation. Besides, soil erosion preferred to transport soil particles with low density and fine size, decreased recalcitrant SOC fractions at erosion sites and increased activities of soil microorganism at deposition sites. After natural grasslands were converted into croplands, obvious variation of soil chemical nutrients, physical structure, and microbial activities had taken place in surface and subsurface soils, and represented a degrading trend to a certain degree. Our studies suggested that adopting optimal management such as conservation tillage in black soil region is an important approach to sequester atmospheric CO2 and to slow greenhouse effects.  相似文献   

13.
Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that grassland C sequestration has a strong potential to partly mitigate the GHG balance of ruminant production systems. However, as soil C sequestration is both reversible and vulnerable to disturbance, biodiversity loss and climate change, CH4 and N2O emissions from the livestock sector need to be reduced and current SOC stocks preserved.  相似文献   

14.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

15.
Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of C sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use–specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m?2, whereas considerably lower stocks of 9.8 and 9.0 kg m?2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C‐rich Gleysols within grassland soils. This demonstrates the relevance of pedogenetic SOC inventories instead of solely land use–based approaches. Our study indicated that cultivation‐induced SOC depletion was probably often overestimated since most studies use fixed depth increments. Moreover, the application of modelled parameters in SOC inventories is questioned because a calculation of SOC stocks using different pedotransfer functions revealed considerably biased results. We recommend SOC stocks be determined by horizon for the entire soil profile in order to estimate the impact of land use changes precisely and to evaluate C sequestration potentials more accurately.  相似文献   

16.
耕作方式转变对小麦/玉米两熟农田土壤固碳能力的影响   总被引:7,自引:0,他引:7  
采用大田试验、室内分析与生产调研相结合的方法,研究了耕作方式对农田生态系统固碳能力的影响.结果表明:少、免耕以及秸秆还田等保护性耕作措施有利于土壤有机碳的累积;免耕秸秆还田(NTS)方式0~5 cm土层土壤有机碳累积量比传统耕作(CTA)方式高18.0%,旋耕秸秆还田(RTS)0~5和5~10 cm土层比CTA分别高17.6%和25.0%,而翻耕秸秆还田(CTS)方式10~30 cm土层土壤总有机碳累积量比CTA高31.8%;CTA转变为NTS后,源于农田投入的碳排放减少了54.3 kg·hm-2·a-1,而转变为CTS、RTS后,分别增加了46.9 kg·hm-2·a-1和34.4 kg·hm-2·a-1;综合土壤碳累积与农田投入碳排放可知,传统耕作转变为保护性耕作方式后可实现由“碳源”向“碳汇”的转变,而CTS、RTS、NTS 3种耕作方式中以RTS的固碳能力最强,达1011.1 kg·hm-2·a-1.  相似文献   

17.
To date, only few studies have compared the soil organic carbon (SOC) sequestration potential between perennial woody and herbaceous crops. The main objective of this study was to assess the effect of perennial woody (poplar, black locust, willow) and herbaceous (giant reed, miscanthus, switchgrass) crops on SOC stock and its stabilization level after 6 years from plantation on an arable field. Seven SOC fractions related to different soil stabilization mechanisms were isolated by a combination of physical and chemical fractionation methods: unprotected (cPOM and fPOM), physically protected (iPOM), physically and chemically protected (HC‐μs + c), chemically protected (HC‐ds + c), and biochemically protected (NHC‐ds + c and NHC‐μs + c). The continuous C input to the soil and the minimal soil disturbance increased SOC stocks in the top 10 cm of soil, but not in deeper soil layers (10–30; 30–60; and 60–100 cm). In the top soil layer, greater SOC accumulation rates were observed under woody species (105 g m?2 yr‐1) than under herbaceous ones (71 g m?2 yr‐1) presumably due to a higher C input from leaf‐litter. The conversion from an arable maize monoculture to perennial bioenergy crops increased the organic C associated to the most labile organic matter (POM) fractions, which accounted for 38% of the total SOC stock across bioenergy crops, while no significant increments were observed in more recalcitrant (silt‐ and clay‐sized) fractions, highlighting that the POM fractions were the most prone to land‐use change. The iPOM fraction increased under all perennial bioenergy species compared to the arable field. In addition, the iPOM was higher under woody crops than under herbaceous ones because of the additional C inputs from leaf‐litter that occurred in the former. Conversion from arable cropping systems to perennial bioenergy crops can effectively increase the SOC stock and enlarge the SOC fraction that is physically protected within soil microaggregates.  相似文献   

18.
Soil organic carbon (SOC) is essential for soil fertility and climate change mitigation, and carbon can be sequestered in soil through proper soil management, including straw return. However, results of studies of long‐term straw return on SOC are contradictory and increasing SOC stocks in upland soils is challenging. This study of North China upland agricultural fields quantified the effects of several fertilizer and straw return treatments on SOC storage changes and crop yields, considering different cropping duration periods, soil types, and cropping systems to establish the relationships of SOC sequestration rates with initial SOC stocks and annual straw C inputs. Our meta‐analysis using long‐term field experiments showed that SOC stock responses to straw return were greater than that of mineral fertilizers alone. Black soils with higher initial SOC stocks also had lower SOC stock increases than did soils with lower initial SOC stocks (fluvo‐aquic and loessial soils) following applications of nitrogen‐phosphorous‐potassium (NPK) fertilizer and NPK+S (straw). Soil C stocks under the NPK and NPK+S treatments increased in the more‐than‐20‐year duration period, while significant SOC stock increases in the NP and NP+S treatment groups were limited to the 11‐ to 20‐year period. Annual crop productivity was higher in double‐cropped wheat and maize under all fertilization treatments, including control (no fertilization), than in the single‐crop systems (wheat or maize). Also, the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related. Moreover, initial SOC stocks and SOC sequestration rates of those treatments were highly negatively correlated. Thus, long‐term straw return integrated with mineral fertilization in upland wheat and maize croplands leads to increased crop yields and SOC stocks. However, those effects of straw return are highly dependent on fertilizer management, cropping system, soil type, duration period, and the initial SOC content.  相似文献   

19.

Purpose

Adoption of the carbon (C)-friendly and cleaner technology is an effective solution to offset some of the anthropogenic emissions. Conservation tillage is widely considered as an important sustainable technology and for the development of conservation agriculture (CA). Thus, the objective of this study was to assess the C sustainability of different tillage systems in a double rice (Oryza sativa L.) cropping system in southern China.

Methods

The experiment was established with no-till (NT), rotary tillage (RT), and conventional tillage (CT) treatments since 2005. Emission of greenhouse gasses (GHG), C footprint (CF), and ecosystem service through C sequestration in different tillage systems were compared.

Result and discussion

Emission of GHG from agricultural inputs (Mg CO2-eq ha?1 year?1) ranged from 1.81 to 1.97 for the early rice, 1.82 to 1.98 for the late rice, and 3.63 to 3.95 for the whole growing season, respectively. The CF (kg CO2-eq kg?1 of rice year?1) in the whole growing seasons were 1.27, 1.85, and 1.40 [excluding soil organic carbon (SOC) storage] and 0.54, 1.20, and 0.72 (including SOC storage) for NT, RT, and CT, respectively. The value of ecosystem services on C sequestration for the whole growing seasons ranged from ¥3,353 to 4,948 ha?1 year?1 and followed the order of NT > CT > RT. The C sustainability under NT was better than that under RT for the late, but reversed for the early rice. However, NT system had better C sustainability for the whole cropping system compared with CT.

Conclusions

Therefore, NT is a preferred technology to reduce GHG emissions, increase ecosystem service functions of C sequestration, and improve C sustainability in a double rice cropping region of Southern China.  相似文献   

20.
Organic carbon (OC) sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78–85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term OC sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号