首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

2.
There is an overdue and urgent need to establish patterns of migratory connectivity linking breeding grounds, stopover sites, and wintering grounds of migratory birds. Such information allows more effective application of conservation efforts by applying focused actions along movement trajectories at the population level. Stable isotope methods, especially those using stable hydrogen isotope abundance in feathers (δ2Hf) combined with Bayesian assignment techniques incorporating prior information such as relative abundance of breeding birds, now provide a fast and reliable means of establishing migratory connectivity, especially for Neotropical migrants that breed in North America and molt prior to fall migration. Here we demonstrate how opportunistic sampling of feathers of 30 species of wintering birds in Cuba, Venezuela, Guatemala, Puerto Rico, and Mexico, regions that have typically been poorly sampled for estimating migratory connectivity, can be assigned to breeding areas in North America through both advanced spatial assignment to probability surfaces and through simpler map lookup approaches. Incorporating relative abundance information from the North American Breeding Bird Survey in our Bayesian assignment models generally resulted in a reduction in potential assignment areas on breeding grounds. However, additional tools to constrain longitude such as DNA markers or other isotopes would be desirable for establishing breeding or molt origins of species with broad longitudinal distributions. The isotope approach could act as a rapid means of establishing basic patterns of migratory connectivity across numerous species and populations. We propose a large‐scale coordinated sampling effort on the wintering grounds to establish an isotopic atlas of migratory connectivity for North American Neotropical migrants and suggest that isotopic variance be considered as a valuable metric to quantify migratory connectivity. This initiative could then act as a strategic template to guide further efforts involving stable isotopes, light‐sensitive geolocators, and other technologies.  相似文献   

3.
Sam T. Ivande  Will Cresswell 《Ibis》2016,158(3):496-505
The specificity of an animal's habitat requirements will determine its ability to deal with anthropogenic climate and habitat change. Migratory birds are thought to be particularly vulnerable to such change, but theory predicts that they should be largely generalists. This prediction was tested with the aim of assessing whether migratory Palaearctic‐breeding birds wintering in the savannah biome of Africa are more or less generalist in their habitat use compared with taxonomically and ecologically similar Afro‐tropical resident species. The degree of specialization of these species groups to certain habitat characteristics was assessed and compared by calculating the relative occurrence of the species along habitat gradients, where wide occurrence indicates generalism and narrow occurrence indicates specialism. Palaearctic migrants as a group could not clearly be distinguished as generalists relative to Afro‐tropical residents with respect to habitat attributes. The only indication of greater flexibility in Palaearctic migrants was a significant tendency to use habitats over a wider latitudinal range. The results suggest that migrants are generalists, but not necessarily more generalist than taxonomically similar resident species that also occur over a wide range of habitat types within the savannah biome. The availability of specific habitat requirements on the wintering grounds in Africa is therefore unlikely to be a primary limiting factor for many Afro‐Palaearctic migratory bird species.  相似文献   

4.
Studies on the impact of climate change on the distributions of bird species in Europe have largely focused on one season at a time, especially concerning summer breeding ranges. We investigated whether migratory bird species show consistent range shifts over the past 55 yr in both breeding and wintering areas or if these shifts are independent. We then analyzed whether patterns in changing migration distances of Finnish breeding birds could be explained by habitat use, phylogeny or body size. We used long‐term datasets from the Finnish ringing centre to analyze the mean wintering latitudes of 29 species of Finnish breeding birds, then used breeding distribution data to make predictions as to whether certain species were migrating shorter or longer distances based on the comparative shifts in the wintering and breeding grounds. Our data reveal species‐specific differences in changing migration distances. We show that for many species, long‐term shifts in wintering ranges have not followed the same patterns as those in the breeding range, leading to differences in migration distances over time. We conclude that species are not adjusting predictably to climate change in their wintering grounds, leading to changing migration distances in some, but not all, species breeding in Finland. This research fills an important gap in the current climate change biology literature, focusing on individuals’ entire life histories and revealing new complexities in range shift patterns.  相似文献   

5.
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status.  相似文献   

6.
7.
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non‐breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species’ distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land‐use. The effects of global change on the non‐breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri‐urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri‐urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri‐urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non‐breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non‐breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non‐breeding grounds, suggesting that management opportunities currently exist to mitigate near‐term non‐breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change.  相似文献   

8.
Differences in seasonal migratory behaviours are thought to be an important component of reproductive isolation in many organisms. Stable isotopes have been used with success in estimating the location and qualities of disjunct breeding and wintering areas. However, few studies have used isotopic data to estimate the movements of hybrid offspring in species that form hybrid zones. Here, we use stable hydrogen to estimate the wintering locations and migratory patterns of two common and widespread migratory birds, Audubon's (Setophaga auduboni) and myrtle (S. coronata) warblers, as well as their hybrids. These two species form a narrow hybrid zone with extensive interbreeding in the Rocky Mountains of British Columbia and Alberta, Canada, which has been studied for over four decades. Isotopes in feathers grown on the wintering grounds or early on migration reveal three important patterns: (1) Audubon's and myrtle warblers from allopatric breeding populations winter in isotopically different environments, consistent with band recovery data and suggesting that there is a narrow migratory transition between the two species, (2) most hybrids appear to overwinter in the south‐eastern USA, similar to where myrtle warblers are known to winter, and (3) some hybrid individuals, particularly those along the western edge of the hybrid zone, show Audubon's‐like isotopic patterns. These data suggest there is a migratory divide between these two species, but that it is not directly coincident with the centre of the hybrid zone in the breeding range. We interpret these findings and discuss them within the context of previous research on hybrid zones, speciation and migratory divides.  相似文献   

9.
Stable isotope analysis of feathers can be useful in the study of seasonal interactions and migratory connectivity in birds. For the Palaearctic–African migration system, however, the lack of isotope data from feathers of known origin in Africa renders the geographic assignment of birds captured on European breeding grounds to potential wintering areas problematic. Rectrices of the threatened aquatic warbler Acrocephalus paludicola grown in Africa were sampled across six European countries to assess whether birds in different breeding populations shared similar isotopic signatures and so were likely to have wintered in the same region in Africa. Freshly grown feathers of aquatic warblers collected at the only known wintering site in Senegal showed high variation in carbon, nitrogen, and hydrogen isotope ratios. Due to similarly high variation in isotope ratios of African‐grown feathers within all breeding populations, it was not possible to determine whether different populations wintered in different regions. However, isotope signatures of 20% of birds captured on European breeding grounds fell outside the range of those captured in Senegal, suggesting a wider wintering distribution than is currently known. We therefore assessed whether the origin of these feathers could be estimated by trying to establish isotopic gradients across sub‐Saharan West Africa. Feathers of three ecologically similar surrogate species were sampled from wetlands across a 3000 km east‐west and a 2000 km north–south transect. Within‐site variation in feather isotope ratios was frequently larger than the difference predicted by gradients across West Africa. Thus, predicting the origin of individual feathers using single‐isotope gradients was not reliable. The large within‐site variability of feather isotope ratios of a habitat specialist species like the aquatic warbler indicates that using feather isotope ratios will require large sample sizes from many locations, and may thus not be an efficient tool in identifying wintering areas of Palaearctic–African migrants.  相似文献   

10.
Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long‐term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population‐level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long‐term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.  相似文献   

11.
Anthropogenic habitat loss and climate change are among the major threats to biodiversity. Bioclimatic zones such as the boreal and arctic regions are undergoing rapid environmental change, which will likely trigger changes in wildlife communities. Disentangling the effects of different drivers of environmental change on species is fundamental to better understand population dynamics under changing conditions. Therefore, in this study we investigate the synergistic effect of winter and summer weather conditions and habitat type on the abundance of 17 migratory boreal waterbird species breeding in Finland using three decades (1986–2015) of count data. We found that above‐average temperatures and precipitations across the western and northern range of the wintering grounds have a positive impact on breeding numbers in the following season, particularly for waterbirds breeding in eutrophic wetlands. Conversely, summer temperatures did not seem to affect waterbird abundance. Moreover, waterbird abundance was higher in eutrophic than in oligotrophic wetlands, but long term trends indicated that populations are decreasing faster in eutrophic than in oligotrophic wetlands. Our results suggest that global warming may apparently benefit waterbirds, e.g. by increased winter survival due to more favourable winter weather conditions. However, the observed population declines, particularly in eutrophic wetlands, may also indicate that the quality of breeding habitat is rapidly deteriorating through increased eutrophication in Finland which override the climatic effects. The findings of this study highlight the importance of embracing a holistic approach, from the level of a single catchment up to the whole flyway, in order to effectively address the threats that waterbirds face on their breeding as well as wintering grounds.  相似文献   

12.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

13.
Annual survivorship in migratory birds is a product of survival across the different periods of the annual cycle (i.e. breeding, wintering, and migration), and may vary substantially among these periods. Determining which periods have the highest mortality, and thus are potentially limiting a population, is important especially for species of conservation concern. To estimate survival probabilities of the willow flycatcher Empidonax traillii in each of the different periods, we combined demographic data from a 10‐year breeding season study with that from a 5‐year wintering grounds study. Estimates of annual apparent survival for breeding and wintering periods were nearly identical (65–66%), as were estimates of monthly apparent survival for both breeding and wintering stationary periods (98–99%). Because flycatchers spend at least half the year on the wintering grounds, overall apparent survivorship was lower (88%) on the wintering grounds than on the breeding grounds (97%). The migratory period had the highest mortality rate, accounting for 62% of the estimated annual mortality even though it comprises only one quarter or less of the annual cycle. The migratory period in the willow flycatcher and many other neotropical migrants is poorly understood, and further research is needed to identify sources of mortality during this crucial period.  相似文献   

14.
Current knowledge of phenological shifts in Palearctic bird migration is largely based on data collected on migrants at their breeding grounds; little is known about the phenology of these birds at their nonbreeding grounds, and even less about that of intra‐African migrants. Because climate change patterns are not uniform across the globe, we can expect regional disparities in bird phenological responses. It is also likely that they vary across species, as species show differences in the strength of affinities they have with particular habitats and environments. Here, we examine the arrival and departure of nine Palearctic and seven intra‐African migratory species in the central Highveld of South Africa, where the former spend their nonbreeding season and the latter their breeding season. Using novel analytical methods based on bird atlas data, we show phenological shifts in migration of five species – red‐backed shrike, spotted flycatcher, common sandpiper, white‐winged tern (Palearctic migrants), and diederik cuckoo (intra‐African migrant) – between two atlas periods: 1987–1991 and 2007–2012. During this time period, Palearctic migrants advanced their departure from their South African nonbreeding grounds. This trend was mainly driven by waterbirds. No consistent changes were observed for intra‐African migrants. Our results suggest that the most consistent drivers of migration phenological shifts act in the northern hemisphere, probably at the breeding grounds.  相似文献   

15.
Neotropic migratory birds are declining across the Western Hemisphere, but conservation efforts have been hampered by the inability to assess where migrants are most limited—the breeding grounds, migratory stopover sites or wintering areas. A major challenge has been the lack of an efficient, reliable and broadly applicable method for measuring the strength of migratory connections between populations across the annual cycle. Here, we show how high‐resolution genetic markers can be used to identify genetically distinct groups of a migratory bird, the Wilson's warbler (Cardellina pusilla), at fine enough spatial scales to facilitate assessing regional drivers of demographic trends. By screening 1626 samples using 96 highly divergent single nucleotide polymorphisms selected from a large pool of candidates (~450 000), we identify novel region‐specific migratory routes and timetables of migration along the Pacific Flyway. Our results illustrate that high‐resolution genetic markers are more reliable, precise and amenable to high throughput screening than previously described intrinsic marking techniques, making them broadly applicable to large‐scale monitoring and conservation of migratory organisms.  相似文献   

16.
Population-scale drivers of individual arrival times in migratory birds   总被引:2,自引:1,他引:1  
1. In migratory species, early arrival on the breeding grounds can often enhance breeding success. Timing of spring migration is therefore a key process that is likely to be influenced both by factors specific to individuals, such as the quality of winter and breeding locations and the distance between them, and by annual variation in weather conditions before and during migration. 2. The Icelandic black-tailed godwit Limosa limosa islandica population is currently increasing and, throughout Iceland, is expanding into poorer quality breeding areas. Using a unique data set of arrival times in Iceland in different years for individuals of known breeding and wintering locations, we show that individuals breeding in lower quality, recently occupied and colder areas arrive later than those from traditionally occupied areas. The population is also expanding into new wintering areas, and males from traditionally occupied winter sites also arrive earlier than those occupying novel sites. 3. Annual variation in timing of migration of individuals is influenced by large-scale weather systems (the North Atlantic Oscillation), but between-individual variation is a stronger predictor of arrival time than the NAO. Distance between winter and breeding sites does not influence arrival times. 4. Annual variation in timing of migration is therefore influenced by climatic factors, but the pattern of individual arrival is primarily related to breeding and winter habitat quality. These habitat effects on arrival patterns are likely to operate through variation in individual condition and local-scale density-dependent processes. Timing of migration thus appears to be a key component of the intricate relationship between wintering and breeding grounds in this migratory system.  相似文献   

17.
To better understand the ecological implications of global climate change for species that display geographically and seasonally dynamic life‐history strategies, we need to determine where and when novel climates are projected to first emerge. Here, we use a multivariate approach to estimate time of emergence (ToE) of novel climates based on three climate variables (precipitation, minimum and maximum temperature) at a weekly temporal resolution within the Western Hemisphere over a 280‐yr period (2021–2300) under a high emissions scenario (RCP8.5). We intersect ToE estimates with weekly estimates of relative abundance for 77 passerine bird species that migrate between temperate breeding grounds in North America and southern tropical and subtropical wintering grounds using observations from the eBird citizen‐science database. During the non‐breeding season, migrants that winter within the tropics are projected to encounter novel climates during the second half of this century. Migrants that winter in the subtropics are projected to encounter novel climates during the first half of the next century. During the beginning of the breeding season, migrants on their temperate breeding grounds are projected to encounter novel climates during the first half of the next century. During the end of the breeding season, migrants are projected to encounter novel climates during the second half of this century. Thus, novel climates will first emerge ca 40–50 yr earlier during the second half of the breeding season. These results emphasize the large seasonal and spatial variation in the formation of novel climates, and the pronounced challenges migratory birds are likely to encounter during this century, especially on their tropical wintering grounds and during the transition from breeding to migration. When assessing the ecological implications of climate change, our findings emphasize the value of applying a full annual cycle perspective using standardized metrics that promote comparisons across space and time.  相似文献   

18.
Long-distance migrants are suffering drastic declines in the last decades. Causes beneath this problem are complex due to the wide spatial and temporal scale involved. We aim to reveal migratory routes, stopover areas, wintering grounds, and migratory strategies for the most southwestern populations of the near-threatened European Roller Coracias garrulus in order to identify conservation key areas for the non-breeding stage of this species. To this end, we used tracking data from seven satellite transmitters fitted to birds breeding in different populations throughout the Iberian Peninsula and four geolocators fitted to individuals in a southeastern Iberian population. Precise satellite data were used to describe daily activity patterns and speed in relation to the main regions crossed during the migration. Individuals from the most southwestern Iberian populations made a detour towards the Atlantic African coast whereas those from northeastern populations followed a straight north-to-south route. We identified important stopover areas in the Sahel belt, mainly in the surroundings of the Lake Chad, and wintering grounds on southwestern Africa farther west than previously reported for the species. Concerning the migratory strategy, satellite data revealed: 1) a mainly nocturnal flying activity, 2) that migration speed depended on the type of crossed habitat, with higher average speed while crossing the desert; and 3) that the migration was slower and lasted longer in autumn than in spring. The studied populations showed weak migratory connectivity, suggesting the confluence of birds from a wide range of breeding grounds in a restricted wintering area. Therefore, we suggest to target on defining precisely key areas for this species and identifying specific threats in them in order to develop an appropriate global conservation programme for the European Roller.  相似文献   

19.
Understanding the population dynamics of migratory animals and predicting the consequences of environmental change requires knowing how populations are spatially connected between different periods of the annual cycle. We used stable isotopes to examine patterns of migratory connectivity across the range of the western sandpiper Calidris mauri. First, we developed a winter isotope basemap from stable‐hydrogen (δD), ‐carbon (δ13C), and ‐nitrogen (δ15N) isotopes of feathers grown in wintering areas. δD and δ15N values from wintering individuals varied with the latitude and longitude of capture location, while δ13C varied with longitude only. We then tested the ability of the basemap to assign known‐origin individuals. Sixty percent of wintering individuals were correctly assigned to their region of origin out of seven possible regions. Finally, we estimated the winter origins of breeding and migrant individuals and compared the resulting empirical distribution against the distribution that would be expected based on patterns of winter relative abundance. For breeding birds, the distribution of winter origins differed from expected only among males in the Yukon‐Kuskokwim (Y‐K) Delta and Nome, Alaska. Males in the Y‐K Delta originated overwhelmingly from western Mexico, while in Nome, there were fewer males from western North America and more from the Baja Peninsula than expected. An unexpectedly high proportion of migrants captured at a stopover site in the interior United States originated from eastern and southern wintering areas, while none originated from western North America. In general, we document substantial mixing between the breeding and wintering populations of both sexes, which will buffer the global population of western sandpipers from the effects of local habitat loss on both breeding and wintering grounds.  相似文献   

20.
Aim The abundance distribution of organisms at regional scales is commonly interpreted as the result of spatial variation in habitat suitability. However, the possibility that geography itself may affect patterns of distribution has received less attention. For example, the abundance of wintering bird populations might be influenced by the cost of reaching areas located far away from the main migratory pathways. We studied the abundance distribution of three common migratory passerines (meadow pipits, Anthus pratensis; common chaffinches, Fringilla coelebs; and European robins, Erithacus rubecula) wintering in farmlands located in the 600‐km long Cantabrian coastal sector of northern Spain, roughly perpendicular to the west Pyrenean migratory pathway that drives European migrant birds into the Iberian Peninsula. Location The study area occupies a belt located between the Atlantic coast and the Cantabrian Mountains in northern Spain. Methods We counted wintering and breeding birds and measured the structure of vegetation and environmental variables (altitude, rainfall, temperature) in 68 farmlands distributed at different distances from the west Pyrenean migratory flyway. We also studied the distribution of birds ringed in central and northern Europe and recovered in the study area between October and February. Analyses were based on single univariate statistics (chi‐square tests), ordination by principal components analysis and multiple regression. Results Controlling for the effects of climate, vegetation structure and local abundance of breeding conspecifics, the winter abundance of all three species decreased with the distance from their main migratory route in the western Pyrenees. Such patterns fitted well to the observed distribution of ringing recoveries. Main conclusions Our results support a link between the movements of birds along the Pyrenean migratory pathway and their winter abundance in northern Spain. According to this view, the sectors located near the migratory pathway seem to be more easily occupied by migrants, supporting the idea that proximity to passage areas may explain the fine‐grain regional patterning of species abundance in wintering grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号