首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Changes in variance are infrequently examined in climate change ecology. We tested the hypothesis that recent high variability in demographic attributes of salmon and seabirds off California is related to increasing variability in remote, large‐scale forcing in the North Pacific operating through changes in local food webs. Linear, indirect numerical responses between krill (primarily Thysanoessa spinifera) and juvenile rockfish abundance (catch per unit effort (CPUE)) explained >80% of the recent variability in the demography of these pelagic predators. We found no relationships between krill and regional upwelling, though a strong connection to the North Pacific Gyre Oscillation (NPGO) index was established. Variance in NPGO and related central Pacific warming index increased after 1985, whereas variance in the canonical ENSO and Pacific Decadal Oscillation did not change. Anthropogenic global warming or natural climate variability may explain recent intensification of the NPGO and its increasing ecological significance. Assessing non‐stationarity in atmospheric‐environmental interactions and placing greater emphasis on documenting changes in variance of bio‐physical systems will enable insight into complex climate‐marine ecosystem dynamics.  相似文献   

2.
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate‐related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20‐year period (1993–2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi‐decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.  相似文献   

3.
Aim An understanding of past relationships between fire occurrence and climate variability will help to elucidate the implications of climate‐change scenarios for future patterns of wildfire. In the present study we investigate the relationships between subalpine‐zone fire occurrence and climate variability and broad‐scale climate patterns in the Pacific and Atlantic Oceans at both interannual and multidecadal time‐scales. Location The study area is the subalpine zone of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta) in the southern sector of the Rocky Mountain National Park, which straddles the continental divide of the northern Colorado Front Range. Methods We compared years of widespread fire from AD 1650 to 1978 for the subalpine zone of southern Rocky Mountain National Park, with climate variables such as measures of drought, and indices such as the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO). Results Years of extensive subalpine‐zone fires are significantly related to climate variability, phases of ENSO, the PDO, and the AMO, as well as to phase combinations of ENSO, the PDO, and the AMO at both interannual and centennial time‐scales. Main conclusions Years of extensive fires are related to extreme drought conditions and are significantly related to the La Niña phase of ENSO, the negative (cool) phase of the PDO, and the positive (warm) phase of the AMO. The co‐occurrence of the phase combination of La Niña‐negative PDO‐positive AMO is more important to fire occurrence than the individual influences of the climate patterns. Low‐frequency trends in the occurrence of this combination of climate‐pattern phases, resulting from trends in the AMO, are the primary climate pattern associated with periods of high fire occurrence (1700–89 and 1851–1919) and a fire‐free period (1790–1850). The apparent controlling influence of the AMO on drought and years of large fires in the subalpine forests of the Colorado Front Range probably applies to an extensive area of western North America.  相似文献   

4.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

5.
Links between climatic conditions in the eastern equatorial Pacific and extratropical ecological processes remain unexplored. The analysis of a 20‐year time series of spatial and numeric dynamics of a threatened Mediterranean bird suggests, however, that such couplings can be remarkably complex. By providing a new ecological time‐series modelling approach, we were able to dissect the joint effects of the El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), regional weather, population density and stochastic variability on the expansion dynamics of the White‐headed duck (Oxyura leococephala) in Spain. Our results suggest that the spatial and numeric dynamics of ducks between peak brood emergence and wintering were simultaneously affected by different climatic phenomena during different phases of their global cycles, involving time lags in the numeric dynamics. Strikingly, our results point to both the NAO and the ENSO as potentially major factors simultaneously forcing ecological processes in the Northern Hemisphere, and suggest a new pathway for non‐additive effects of climate in ecology.  相似文献   

6.
Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate‐driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33‐year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river‐dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.  相似文献   

7.
Climate and wildfires in the North American boreal forest   总被引:1,自引:0,他引:1  
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire–climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire–climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire–climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.  相似文献   

8.
To model the effects of global climate phenomena on avian population dynamics, we must identify and quantify the spatial and temporal relationships between climate, weather and bird populations. Previous studies show that in Europe, the North Atlantic Oscillation (NAO) influences winter and spring weather that in turn affects resident and migratory landbird species. Similarly, in North America, the El Niño/Southern Oscillation (ENSO) of the Pacific Ocean reportedly drives weather patterns that affect prey availability and population dynamics of landbird species which winter in the Caribbean. Here we show that ENSO‐ and NAO‐induced seasonal weather conditions differentially affect neotropical‐ and temperate‐wintering landbird species that breed in Pacific North‐west forests of North America. For neotropical species wintering in western Mexico, El Niño conditions correlate with cooler, wetter conditions prior to spring migration, and with high reproductive success the following summer. For temperate wintering species, springtime NAO indices correlate strongly with levels of forest defoliation by the larvae of two moth species and also with annual reproductive success, especially among species known to prey upon those larvae. Generalized linear models incorporating NAO indices and ENSO precipitation indices explain 50–90% of the annual variation in productivity reported for 10 landbird species. These results represent an important step towards spatially explicit modelling of avian population dynamics at regional scales.  相似文献   

9.
Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries‐long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.  相似文献   

10.
This paper describes the relationship between eastern North Pacific gray whale calf production and environmental conditions in the Pacific Arctic where they feed. The results show how interannual variation in sea ice cover in the Bering and Chukchi Seas along with broader indices of North Pacific climate, such as Pacific Decadal Oscillation (PDO) and North Pacific Index (NPI), are linked to variation in gray whale reproductive output. Estimates of gray whale calf production were derived from 23 consecutive years (1994–2016) of shore-based visual surveys conducted off California during the northward migration. PDO and NPI in combination with ice cover in the Bering and Chukchi Seas during the early phase of gestation appear to be important in explaining the observed variability in calf production. Of the 2,285 time series linear models evaluated, the model of best-fit included PDO(July), Ice(June), NPI(February), and explained 60% of the observed variability in calf production. After elimination of two data outliers in calf production estimates (2013 and 2014) a model including Ice(May), PDO(May), and NPI(July) explained 90% of the variability. We conclude that access to prey early in the gestation period is critical to reproductive success in this population and may be important for other capital breeding mammals.  相似文献   

11.
The classic 10‐year population cycle of snowshoe hares (Lepus americanus, Erxleben 1777) and Canada lynx (Lynx canadensis, Kerr 1792) in the boreal forests of North America has drawn much attention from both population and community ecologists worldwide; however, the ecological mechanisms driving the 10‐year cyclic dynamic pattern are not fully revealed yet. In this study, by the use of historic fur harvest data, we constructed a series of generalized additive models to study the effects of density dependence, predation, and climate (both global climate indices of North Atlantic Oscillation index (NAO), Southern Oscillation index (SOI) and northern hemispheric temperature (NHT) and local weather data including temperature, rainfall, and snow). We identified several key pathways from global and local climate to lynx with various time lags: rainfall shows a negative, and snow shows a positive effect on lynx; NHT and NAO negatively affect lynx through their positive effect on rainfall and negative effect on snow; SOI positively affects lynx through its negative effect on rainfall. Direct or delayed density dependency effects, the prey effect of hare on lynx and a 2‐year delayed negative effect of lynx on hare (defined as asymmetric predation) were found. The simulated population dynamics is well fitted to the observed long‐term fluctuations of hare and lynx populations. Through simulation, we find density dependency and asymmetric predation, only producing damped oscillation, are necessary but not sufficient factors in causing the observed 10‐year cycles; while extrinsic climate factors are important in producing and modifying the sustained cycles. Two recent population declines of lynx (1940–1955 and after 1980) were likely caused by ongoing climate warming indirectly. Our results provide an alternative explanation to the mechanism of the 10‐year cycles, and there is a need for further investigation on links between disappearance of population cycles and global warming in hare–lynx system.  相似文献   

12.
Recent climate reconstructions are analyzed specifically for insights into those patterns of climate variability in past centuries with greatest impact on the North American region. Regional variability, largely associated with the El Nino/Southern Oscillation (ENSO) phenomenon, the North Atlantic Oscillation (NAO), and multidecadal patterns of natural variability, are found to mask the emergence of an anthropogenic temperature signal in North America. Substantial recent temperature anomalies may however indicate a possible recent emergence of this signal in the region. Multidecadal North Atlantic variability is likely to positively reinforce any anthropogenic warming over substantial parts of North America in coming decades. The recent magnitudes of El Nino events appear to be unprecedented over the past several centuries. These recent changes, if anthropogenic in nature, may outweigh the projection of larger-scale climate change patterns onto the region in a climate change scenario. The implications of such changes for North America, however, are not yet clear. These observations suggest caution in assessing regional climate change scenarios in North America without a detailed consideration of possible anthropogenic changes in climate patterns influencing the region.  相似文献   

13.
Regime shifts in the breeding of an Atlantic puffin population   总被引:1,自引:0,他引:1  
Timing of breeding is a key factor determining the reproductive success in bird populations and known to be affected by climate fluctuations. We investigated the long‐term (1978–2002) relationship between climate and hatching date within a population of Atlantic puffin Fratercula arctica at Røst in the Norwegian Sea. The timing of puffin breeding was found to be influenced by the North Atlantic Oscillation winter index (NAO). We isolated two temporal regimes, one where NAO had a significant effect on hatching date (1978–1986 and 1995–2002) and one where these variables were independent (1987–1994). Hatching date could be modelled using, in addition to NAO, hatching date and food abundance in the preceding breeding season (possibly proxies of parental effort). The models remained significant for regime 1 but not for regime 2. NAO differed between the two regimes suggesting that the shifts were induced by climate change, possibly via its effect on the availability of prey in the preceding year. The novelty of our study is the identification of temporal regimes in the effects of climate within one population.  相似文献   

14.
Aim We tested whether a hybrid zone that has formed between an endemic and an invasive species of marine mussel has shifted poleward as expected under a general hypothesis of global warming or has responded instead to decadal climate oscillations. Location We sampled 15 locations on the coast of California, USA, that span the distributions of the two species of marine mussels and their hybrids. Methods Mussels were sampled in 2005–08 and analysed at three nuclear gene loci using methods identical to those used in a study a decade earlier in order to document the genetic architecture of this system. Change in the system was determined by comparing the frequency of species‐specific alleles and multi‐locus genotypes over the intervening decade. Climate variation over the same period was examined by comparing the Pacific Decadal Oscillation (PDO), El Niño/Southern Oscillation (ENSO), upwelling indices and sea surface temperature (SST) during and prior to the study period. Results Contrary to the general expectations of global warming we show that the highly invasive warm‐water mussel Mytilus galloprovincialis and the hybrid zone formed with the endemic species Mytilus trossulus has rapidly contracted southwards. Mytilus galloprovincialis declined in abundance over the northern third of its geographic range (c. 540 km) and has become rare or absent across the northern 200 km of the range it previously colonized during its initial invasion. The distribution of the native species M. trossulus has remained unchanged over the same time period. Main conclusions The large‐scale range shift in the warm‐water invasive species M. galloprovincialis and the hybrid zone it forms with M. trossulus has been exceptionally rapid and is in the opposite direction to that predicted by the global warming hypotheses. This shift, however, is consistent with decadal climate variation associated with the ENSO and the PDO. Since the biogeography of this system was first described in 1999, the PDO has shifted from a warm phase, dominated by frequent and large El Niño events, to a cold‐phase period, with minimal ENSO activity. Thus recent decadal climate variation can oppose global trends in average temperature and this study illustrates the need to integrate the effects of climate change across multiple time‐scales.  相似文献   

15.
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom‐up processes, the top‐down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi‐decadal Oscillation (AMO). While previous studies have hypothesized that climate‐driven warming would facilitate seasonal stratification of surface waters and long‐term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom‐up (NAO control) and top‐down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.  相似文献   

16.
The global distribution of zooplankton community structure is known to follow latitudinal temperature gradients: larger species in cooler, higher latitudinal regions. However, interspecific relationships between temperature and size in zooplankton communities have not been fully examined in terms of temporal variation. To re‐examine the relationship on a temporal scale and the effects of climate control thereon, we investigated the variation in copepod size structure in the eastern and western subarctic North Pacific in 2000–2011. This report presents the first basin‐scale comparison of zooplankton community changes in the North Pacific based on a fully standardized data set obtained from the Continuous Plankton Recorder (CPR) survey. We found an increase in copepod community size (CCS) after 2006–2007 in the both regions because of the increased dominance of large cold‐water species. Sea surface temperature varied in an east–west dipole manner, showing the typical Pacific Decadal Oscillation pattern: cooling in the east and warming in the west after 2006–2007. The observed positive correlation between CCS and sea surface temperature in the western North Pacific was inconsistent with the conventional interspecific temperature–size relationship. We explained this discrepancy by the geographical shift of the upper boundary of the thermal niche, the 9°C isotherm, of large cold‐water species. In the eastern North Pacific, the boundary stretched northeast, to cover a large part of the sampling area after 2006–2007. In contrast, in the western North Pacific, the isotherm location hardly changed and the sampling area remained within its thermal niche throughout the study period, despite the warming that occurred. Our study suggests that while a climate‐induced basin‐scale cool–warm cycle can alter copepod community size and might subsequently impact the functions of the marine ecosystem in the North Pacific, the interspecific temperature–size relationship is not invariant and that understanding region‐specific processes linking climate and ecosystem is indispensable.  相似文献   

17.
Aim To quantitatively explore the extent to which many different populations of the same species (chinook salmon, Oncorhynchus tshawytscha) respond cohesively to a common large‐scale climatic trend. Location The Columbia River basin of the northwestern US. Methods I used regression analyses to describe the downward trend in population growth (number of recruits per spawning adult) for thirteen populations of chinook salmon distributed among three geographical regions: Snake River, Upper Columbia River and Middle Columbia River. I then used residuals from these regressions to characterize per capita productivity for each brood year. Positive residuals indicated productivity higher than that predicted by the time series, while negative residuals revealed years in which productivity was lower than predicted. I next used analysis of covariance (ancova ) to test the null hypothesis that associations between ocean/climate conditions and deviations from predicted population growth did not vary among geographical regions. All ancova s used residuals generated from the regressions as the response variable, geographical region as the main effect, and climatic condition [characterized by the Pacific Decadal Oscillation index (PDO)] as the covariate. A major climate shift occurred in 1977, and because the association of the PDO with salmon productivity varied between the pre‐ and post‐1977 climate regimes, I analysed data from the two regimes separately. Results There were marked impacts of climate on salmon production that varied among geographical regions and between decade‐scale climate regimes. During the pre‐1977 climate regime, productivity of salmon populations from the Snake River tended to exceed expectations (i.e. residuals were positive) when values of the PDO were negative. In contrast, this pattern was not evident in populations from the upper or middle Columbia Rivers. During the post‐1977 regime when ocean productivity was generally lower, the association of the PDO with salmon productivity changed – productivity tended to fall short of expectations (i.e. residuals were negative) when values of the PDO were negative. Main conclusions Understanding the linkages between salmon populations and climate is critical as managers attempt to preserve threatened salmon populations in the face of both natural or human‐induced climate variation and the litany of human activities affecting salmon. An important step in this understanding is the recognition that the response to ocean/climate change by salmon populations of the same species and river basin is not necessarily homogeneous.  相似文献   

18.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

19.
Decadal‐ to multi‐decadal variations have been reported in many regional ecosystems in the North Pacific, resulting in an increasing demand to elucidate the link between long‐term climatic forcing and marine ecosystems. We detected phenological and quantitative changes in the copepod community in response to the decadal climatic variation in the western subarctic North Pacific by analyzing the extensive zooplankton collection taken since the 1950s, the Odate Collection. Copepod species were classified into five seasonal groups depending on the timing of the annual peak in abundance. The abundance of the spring community gradually increased for the period 1960–2002. The spring–summer community also showed an increasing trend in May, but a decadal oscillation pattern of quasi‐30‐year cycles in July. Phenological changes coincided with the climate regime shift in the mid‐1970s, indicated by the Pacific decadal oscillation index (PDO). After the regime shift, the timing of the peak abundance was delayed one month, from March–April to April–May, in the spring community, whereas it peaked earlier, from June–July to May–June, in the spring–summer community, resulting in an overlap of the high productivity period for the two communities in May. Wintertime cooling, followed by rapid summertime warming, was considered to be responsible for delayed initiation and early termination of the productive season after the mid‐1970s. Another phenological shift, quite different from the previous decade, was observed in the mid‐1990s, when warm winters followed by cool summers lengthened the productive season. The results suggest that climatic forcing with different decadal cycles may operate independently during winter–spring and spring–summer to create seasonal and interannual variations in hydrographic conditions; thus, combinations of these seasonal processes may determine the annual biological productivity.  相似文献   

20.
The ecological factors driving the occurrence of harmful algal blooms (HAB) have been traditionally analysed from a hydrological point of view, whereas the interplay between atmospheric oscillations and HAB has been scarcely explored. Here we address the possible link between atmospheric oscillations in SW Europe, using as proxies the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) indices and the interannual variability in HAB. The yearly series (1973–2005) of mortality of water birds and fish in Doñana National Park (SW Spain) due to toxins associated with the cyanobacterium Microcystis aeruginosa, and the monthly incidence (January 1999 to December 2007) of the paralytic shellfish poisoning (PSP) toxin produced by the dinoflagellate Gymnodinium catenatum in the Rías Baixas (NW Spain), were selected as models of HAB in SW Europe. The incidences of both toxic algal events were fitted to a binary logistic regression as a function of the atmospheric oscillation indices (with different delays in accordance with each toxic event) and a favourability function was then computed. The favourability for the wildlife mortality in Doñana National Park was as a function of the AO averaged for the summer period (June–August) whereas the favourability for the incidence of PSP in the Rías Baixas was a function of the NAO recorded 1 month before the event. Since HAB have a relevant impact on ecosystems and human health, there is great interest in deciphering the ecological conditions favouring these events. Here we show that the atmospheric oscillations could be drivers of ecological processes linked to the occurrence of HAB in SW Europe. Moreover, the favourability functions relating NAO and AO indices with algal toxic events in SW Europe could be used as a powerful tool to predict toxic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号