首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
De Gelder L  Williams JJ  Ponciano JM  Sota M  Top EM 《Genetics》2008,178(4):2179-2190
Little is known about the range of hosts in which broad-host-range (BHR) plasmids can persist in the absence of selection for plasmid-encoded traits, and whether this "long-term host range" can evolve over time. Previously, the BHR multidrug resistance plasmid pB10 was shown to be highly unstable in Stenotrophomonas maltophilia P21 and Pseudomonas putida H2. To investigate whether this plasmid can adapt to such unfavorable hosts, we performed evolution experiments wherein pB10 was maintained in strain P21, strain H2, and alternatingly in P21 and H2. Plasmids that evolved in P21 and in both hosts showed increased stability and decreased cost in ancestral host P21. However, the latter group showed higher variability in stability patterns, suggesting that regular switching between distinct hosts hampered adaptive plasmid evolution. The plasmids evolved in P21 were also equally or more stable in other hosts compared to pB10, which suggested true host-range expansion. The complete genome sequences of four evolved plasmids with improved stability showed only one or two genetic changes. The stability of plasmids evolved in H2 improved only in their coevolved hosts, not in the ancestral host. Thus a BHR plasmid can adapt to an unfavorable host and thereby expand its long-term host range.  相似文献   

2.
Conjugative plasmids play a very important role in bacterial adaptation through the dissemination of useful traits. Incompatibility group P-1 (IncP-1) plasmids exhibit an extreme broad-host-range among Gram-negative bacteria and known to be one of the major agents to disseminate various phenotypic traits such as antibiotic resistance and xenobiotic degradation. Although the plasmids are believed to be very stable in most Gram-negative bacteria, little is known about the factors that affect their stability in various hosts, allowing their persistence in bacterial population. Here we show that the stability of the cryptic IncP-1β plasmid pBP136 differed greatly in four different Escherichia coli K12 host backgrounds (MG1655, DH5α, EC100, and JM109), whereas the closely related plasmid pB10 was stable in all four strains. The supply of the kleF gene, which is involved in the stability of IncP-1 plasmids but absent in pBP136, did not improve the stability of the plasmid. Our findings suggest that persistence of IncP-1 plasmids in the absence of selection is affected by strain-specific factors.  相似文献   

3.
Phenotypic plasticity in bacterial plasmids   总被引:3,自引:0,他引:3  
Turner PE 《Genetics》2004,167(1):9-20
Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments.  相似文献   

4.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

5.
We have found that tetracycline resistance on different naturally occurring bacterial plasmids is encoded by more than one genetic determinant. Using restriction enzyme analyses and DNA-DNA hybridization to specific 32P-labeled genetic probes, we can define at least four genetically distinct tetracycline resistance determiants: Class A (the determinant on prototype plasmid RP1), Class B (that on R222), and Class C (that on plasmid pSC101). At least one other determinant, encoded by plasmid RA1, belongs to none of these three groups and has been designated Class D. These genetic classes confirm phenotypic differences in expression of resistance to tetracycline and tetracycline analogs encoded by the different plasmids.  相似文献   

6.
IncP-1 plasmids are known to be promiscuous, but it is not understood if they are equally well adapted to various species within their host range. Moreover, little is known about their fate in bacterial communities. We determined if the IncP-1beta plasmid pB10 was unstable in some Proteobacteria, and whether plasmid stability was enhanced after long-term carriage in a single host and when regularly switched between isogenic hosts. Plasmid pB10 was found to be very unstable in Pseudomonas putida H2, and conferred a high cost (c. 20% decrease in fitness relative to the plasmid-free host). H2(pB10) was then evolved under conditions that selected for plasmid maintenance, with or without regular plasmid transfer (host-switching). When tested in the ancestral host, the evolved plasmids were more stable and their cost was significantly reduced (9% and 16% for plasmids from host-switched and nonswitched lineages, respectively). Our findings suggest that IncP-1 plasmids can rapidly adapt to an unfavorable host by improving their overall stability, and that regular conjugative transfer accelerates this process.  相似文献   

7.
The IncP-1beta plasmid pB8, which confers resistance to amoxicillin, spectinomycin, streptomycin, and sulfonamides, was previously isolated from a sewage treatment plant. It was found to possess abnormal conjugative transfer properties, i.e., transfer to Escherichia coli by conjugation or electroporation could not be detected. We showed in this study that plasmid pB8 is transferable to E. coli by conjugation, but only at low frequencies and under specific experimental conditions, a phenomenon that is very unusual for IncP-1 plasmids. Determination of the complete 57,198bp pB8 nucleotide sequence revealed that the backbone of the plasmid consists of a complete set of IncP-1beta-specific genes for replication initiation, conjugative plasmid transfer, stable inheritance, and plasmid control with an organisation identical to that of the prototype IncP-1beta plasmid R751. All of the minor differences in the pB8 backbone sequence compared to that of R751 were also found in other IncP-1beta plasmids known to transfer to and replicate in E. coli. Plasmids pB8 and R751 can be distinguished with respect to their accessory genetic elements. First, the pB8 region downstream of the replication initiation gene trfA contains two transposable elements one of which is similar to Tn5501. The latter transposon encodes a putative post-segregational-killing system and the small multidrug resistance (SMR) protein QacF, mediating quaternary ammonium compound resistance. The accessory genes in this region are not responsible for the poor plasmid transfer to E. coli since a pB8 deletion derivative devoid of all genes in that region showed the same conjugative transfer properties as pB8. A Tn5090/Tn402 derivative carrying a class 1 integron is located between the conjugative transfer modules. The Tn5090/Tn402 integration-sites are exactly identical on pB8 and R751 but in contrast to R751 the pB8 element carries the resistance gene cassettes oxa-2 for amoxicillin resistance and aadA4 for streptomycin/spectinomycin resistance, the integron-specific conserved segment consisting of the genes qacEDelta1, sul1, and orf5, and a truncated tni transposition module (tniAB). Although future work will have to determine the molecular basis for the poor transfer of pB8 to E. coli, our findings demonstrate that the host-range of typical IncP-1 plasmids may be less broad than expected.  相似文献   

8.
In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10−5 to 10−8 per recipient. A total of 12 distinct plasmids, designated pB1–pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10−1 to 10−2 per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPβ subgroup, whereas two plasmids were identified as IncPα plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPβ plasmids at the DNA sequence level. In order to characterize the gene “load” of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified. Received: 11 October 1999 / Accepted: 11 January 2000  相似文献   

9.
It was shown that Pseudomonas aeruginosa hospital strains isolated from patients and environment in the Republican Centre of Burns in Tbilisi contained conjugative R plasmids. The plasmids were marked pM15 and pM19, respectively. The plasmid pM15 determined resistance to carbenicillin, kanamycin and tetracycline and plasmid pM19 determined resistance to carbenicillin, kanamycin, tetracycline, chloramphenicol, gentamicin and streptomycin. Plasmid pM15 had a molecular weight of 45.8 MD and seven sites for EcoRI, six sites for HindIII and five sites for Hpa-I-restrictase. This plasmid, as others, belongs to the Inc-P1 incompatibility group.  相似文献   

10.
Summary The maintenance and genetic stability of the vector plasmids pBR322 and pBR325 in two genetically different Escherichia coli hosts were studied during chemostat cultivation with glucose and ammonium chloride limitation and at two different dilution rates. The plasmid pBR322 was stably maintained under all growth conditions tested. However pBR325 segregated from both hosts preferentially during glucose limitation and at low dilution rate. In addition to this general segregation process a separate loss of tetracycline resistance was observed. The remaining plasmid conferred resistance to ampicillin and chloramphenicol only, without any remarkable alteration of its molecular weight.Cultivation conditions in the chemostat were found that allowed the stable genetic inheritance of both plasmids in the hosts studied.  相似文献   

11.
The maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in three Pseudomonas hosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses.  相似文献   

12.
It has been hypothesized that there is a fundamental conflict between horizontal (infectious) and vertical (intergenerational) modes of parasite transmission. Activities of a parasite that increase its rate of infectious transmission are presumed to reduce its host's fitness. This reduction in host fitness impedes vertical transmission of the parasite and causes a tradeoff between horizontal and vertical transmission. Given this tradeoff, and assuming no multiple infections (no within-host competition among parasites), a simple model predicts that the density of uninfected hosts in the environment should determine the optimum balance between modes of parasite transmission. When susceptible hosts are abundant, selection should favor increased rates of horizontal transfer, even at the expense of reduced vertical transmission. Conversely, when hosts are rare, selection should favor increased vertical transmission even at the expense of lower horizontal transfer. We tested the tradeoff hypothesis and these evolutionary predictions using conjugative plasmids and the bacteria that they infect. Plasmids were allowed to evolve for 500 generations in environments with different densities of susceptible hosts. The plasmid's rate of horizontal transfer by conjugation increased at the expense of host fitness, indicating a tradeoff between horizontal and vertical transmission. Also, reductions in conjugation rate repeatedly coincided with the loss of a particular plasmid-encoded antibiotic resistance gene. However, susceptible host density had no significant effect on the evolution of horizontal versus vertical modes of plasmid transmission. We consider several possible explanations for the failure to observe such an effect.  相似文献   

13.
Conjugative tetracycline resistance plasmids from 15 Clostridium perfringens isolates from piggeries were analyzed by restriction endonuclease digestion and agarose gel electrophoresis. Seven isolates from one farm were found to carry a 47-kilobase pair (kb) plasmid, pJIR5, which had EcoRI, XbaI, and ClaI profiles that were identical to those of a previously characterized plasmid, pCW3. An isolate from a second farm was found to carry a plasmid, pJIR6, which also was indistinguishable from pCW3. Five additional isolates from a third farm carried a 67-kb plasmid, pJIR2, which had at least 29 kb of DNA in common with pCW3. Finally, two isolates from a fourth farm were found to carry a 50-kb plasmid pJIR4, which appeared to consist of an entire pCW3 molecule with a 3-kb insertion. Comparative restriction maps of pCW3, pJIR2, and pJIR4 that identified the regions of homology among these plasmids were constructed. We suggest that many conjugative tetracycline resistance plasmids in C. perfringens may contain a pCW3-like core.  相似文献   

14.
The community structure in two different agricultural soils has been investigated. Phenotypic diversity was assessed by applying BIOLOG-profiles on a total of 208 bacterial isolates. Diversity indices were calculated from cluster analysis of the BIOLOG data. The bacterial isolates were also evaluated for resistance towards six different antibiotics, mercury resistance and the presence of plasmids. The presence of tetracycline-resistant determinants class A to E among Gram-negative bacteria was analysed with DNA probes. The distribution of tetracycline resistance markers among colonies growing on non-selective and tetracycline-selective plates were compared. The phenotypic approach demonstrated some difference in the diversity within the two soils. The frequency of antibiotic resistance isolates was high in both soils, whereas the frequency of mercury resistance differed significantly. We found no correlation between plasmid profiles and antibiotic resistance patterns. We found all the tetracycline resistance determinants except class B, indicating that the diversity of the tetracycline resistance determinants was complex in populations of resident soil bacteria under no apparent selective pressure for the genes in question.  相似文献   

15.
A tetracycline resistance plasmid of Streptococcus faecalis, pAM alpha 1, is shown to contain two independent sets of replication functions, separated from each other on either side by short (300- to 400-base-pair) sequences of homology. The homologous sequences are oriented as direct repeats and therefore permit the dissociation of pAM alpha 1 into its component replicons, referred to here as pAM alpha 1 delta 1 and pAM alpha 1 delta 2, as the reciprocal products of a simple intramolecular recombination. pAM alpha 1 delta 1 is a 4.6-kilobase plasmid which carries the tet gene, and pAM alpha 1 delta 2 is a 5.1-kilobase plasmid which carries no known selectable marker. pAM alpha 1 delta 1 is shown to replicate efficiently in Bacillus subtilis and to confer tetracycline resistance on Bacillus hosts. We demonstrate by restriction mapping analysis that pAM alpha 1 delta 1 is virtually identical to a 4.6-kilobase tetracycline resistance plasmid of Bacillus cereus, pBC16, which is known to show extensive homology to plasmid isolates from Staphylococcus species (such as pUB110), as well as from other Bacillus species. The pAM alpha 1 delta 1-pBC16-pUB110 replicon thus exists naturally in at least three different gram-positive genera, indicating that these plasmids have a high degree of interspecific functional adaptability and supporting the view that plasmid DNA is commonly exchanged among many species of gram-positive bacteria in their natural environments.  相似文献   

16.
Horizontal transfer of multiresistance plasmids in the environment contributes to the growing problem of drug-resistant pathogens. Even though the plasmid host cell is the primary environment in which the plasmid functions, possible effects of the plasmid donor on the range of bacteria to which plasmids spread in microbial communities have not been investigated. In this study we show that the host range of a broad-host-range plasmid within an activated-sludge microbial community was influenced by the donor strain and that various mating conditions and isolation strategies increased the diversity of transconjugants detected. To detect transconjugants, the plasmid pB10 was marked with lacp-rfp, while rfp expression was repressed in the donors by chromosomal lacI(q). The phylogeny of 306 transconjugants obtained was determined by analysis of partial 16S rRNA gene sequences. The transconjugants belonged to 15 genera of the alpha- and gamma-Proteobacteria. The phylogenetic diversity of transconjugants obtained in separate matings with donors Pseudomonas putida SM1443, Ralstonia eutropha JMP228, and Sinorhizobium meliloti RM1021 was significantly different. For example, the transconjugants obtained after matings in sludge with S. meliloti RM1021 included eight genera that were not represented among the transconjugants obtained with the other two donors. Our results indicate that the spectrum of hosts to which a promiscuous plasmid transfers in a microbial community can be strongly influenced by the donor from which it transfers.  相似文献   

17.
The maintenance of the plasmid vectors pTG201 and pTG206 (which both carry the Pseudomonas putida xylE gene) and pB lambda H3 in Escherichia coli hosts was studied in free and immobilized continuous cultures. pTG201, containing the strong lambda PR promoter, was more quickly lost than plasmid pTG206, containing the tetracycline resistance gene promoter. The instability of pTG201 seems to be related to high expression of the cloned xylE genet. Fluctuations in the proportion of pTG201-containing cells were observed in the free system, suggesting the appearance of adaptive descendants (with and without plasmid) from the initial strains. The loss of plasmid vectors from E. coli cells and the fluctuations in the proportion of plasmid-containing cells could be prevented by immobilizing plasmid-containing bacteria in carrageenan gel beads.  相似文献   

18.
19.
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号