首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
森林生态系统的碳汇功能对我国完成“双碳目标”具有独特意义,其中森林伐后碳减排,包括木质林产品全生命周期内的碳储和替代减排,是增强林业中长期碳减排能力的重要路径。当前我国森林伐后碳减排研究尚落后于欧美等发达国家,不利于我国林业国家碳库模型的构建以及更好地指导固碳增汇的森林管理策略。系统回顾了近30余年国内外学术界关于森林伐后碳减排方法学的演进动态,总结了碳循环和碳减排模型的核心参数,为推进我国森林伐后碳减排研究提供理论基础。学术界近30余年涉及方法模型的主要成果如下:(1)建立并完善了立足于木材采伐国的生产法和简单分解法,以及立足于终端木质林产品消费国的储量变化法和大气流动法两类方法框架;(2)形成了体系化的碳储计算模型,并在包括发达国家和主要发展中国家取得了大量实测数据和参数积累;(3)初步完成了替代减排分析模型和基于情景设定的分析框架,并在以欧美国家为主体的部分地区进行了应用。在梳理历史文献的基础上,本研究认为当前存在的方法缺陷包括:第一,既有依靠实测调研获取数据的成本过高,限制了研究国家的深度和广度,尤其导致广大发展中国家研究较为薄弱;第二,当前方法框架在追踪木质林产品贸易流方面较...  相似文献   

2.
There is a great potential to reduce greenhouse gas (GHG) emissions related to livestock production. For achieving this potential will require new initiatives at national and international levels that include promoting research and development on new mitigation technologies; deploying, diffusing and transferring technologies to mitigate emissions; and enhancing capacities to monitor, report and verify emissions from livestock production. This study describes the sources of livestock-related GHG emissions and reviews available mitigation technologies and practices. We assess the main policy instruments available to curb emissions and promote carbon sinks, and discuss the relative merits of alternative approaches. We discuss recent experiences in countries that have enacted mitigation strategies for the livestock sector to illustrate some of the key issues and constraints in policy implementation. Finally, we explore the main issues and challenges surrounding international efforts to mitigate GHG emissions and discuss some possible ways to address these challenges in future climate agreements.  相似文献   

3.
More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2e yr?1 by 2030 to limit warming in 2100 to 2 °C above pre‐industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21–40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture‐related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.  相似文献   

4.
Globalization has been one main driver affecting our whole economy. Thus, greenhouse gas emissions (GHGs) associated with imports and exports should get addressed in addition to the national emission inventory according to the United Nations Framework Convention on Climate Change (UNFCCC), which is focused on territorial emissions only. To enable a correct calculation for imports and exports and to find the most emission‐intensive products and their origin, a product‐ and technology‐specific approach would be favorable which has not been applied up to now. This article addresses this research gap in developing and applying such an approach to calculate the GHGs behind consumption of products in Austria. It is based on physical flows combined with life‐cycle‐based emission factors and emission intensities derived from sector‐ and country‐specific energy mix, for calculating all emissions behind the production chain (resources to final products) of products consumed in Austria. The results have shown that consumption of products in Austria leads to about 60% more emissions than those of the national inventory and that the main part of these emissions comes from the provision of products. The most emission‐intensive products are coming from the chemical and the metal industry. In particular, imports are the main driver of these emissions and are more emission intensive than those produced in Austria. As a result, it is necessary to look at practical measures to reduce emissions along the production chain not only in Austria, but especially abroad as well.  相似文献   

5.
There are several air pollution issues that concern the international community at the regional and global level, including acid deposition, heavy metals, persistent organic pollutants, stratospheric ozone depletion, and climate change. Governments at the regional and global levels have entered into various agreements in an effort to deal with these problems. This paper deals with two major global atmospheric change issues: stratospheric ozone depletion and climate change. The focus is on the policy responses of the United States to these global issues. The United States has signed and ratified international agreements to deal with both problems. The Vienna Convention and the Montreal Protocol on Substances that Deplete the Ozone Layer have led to an effort in both developed and developing countries to phase out ozone depleting substances. The United Nations Framework Convention on Climate Change (UNFCCC) has been signed and ratified by over 180 countries. The UNFCC contained no binding targets and timetables for emissions reductions. The Kyoto Protocol (1997) to the UNFCCC did contain targets and timetables for reductions of greenhouse gases on the part of developed countries. The United States has signed but not ratified the Kyoto Protocol. The United States has experienced some movement to reduce greenhouse gas emissions on the part of various levels of government as well as the private sector. The policy process is constantly informed by scientific research. In the case of stratospheric ozone depletion and climate change, much of this work is carried out under the auspices of international scientific panels. From a policy perspective, there is a great deal of interest in the use of indicators for assessing the scope and magnitude of these problems, both for fashioning policy responses as well as assessing the impact of adopted programs to reduce ozone depleting substances, and potentially, greenhouse gases. This paper will discuss some of the indicators used for stratospheric ozone depletion and climate change.  相似文献   

6.
Due to the increasing global warming in the world, analyzing greenhouse gas emissions is a crucial issue. This study has examined greenhouse gas emissions in Turkey according to energy sector, industrial processes sector, agriculture sector and waste sector. Then, time series analysis models are used to estimate greenhouse gas emissions based on sectors. Models' performances are tested using mean error, mean absolute error and root mean square error. The results show that forecasting models have a good potential to estimate the national greenhouse gas emissions for different sector within a reasonable error. The study results will help organize and estimate the national greenhouse gas emissions inventory.  相似文献   

7.
The livestock sector contributes considerably to global greenhouse gas emissions (GHG). Here, for the year 2007 we examined GHG emissions in the EU27 livestock sector and estimated GHG emissions from production and consumption of livestock products; including imports, exports and wastage. We also reviewed available mitigation options and estimated their potential. The focus of this review is on the beef and dairy sector since these contribute 60% of all livestock production emissions. Particular attention is paid to the role of land use and land use change (LULUC) and carbon sequestration in grasslands. GHG emissions of all livestock products amount to between 630 and 863 Mt CO2e, or 12–17% of total EU27 GHG emissions in 2007. The highest emissions aside from production, originate from LULUC, followed by emissions from wasted food. The total GHG mitigation potential from the livestock sector in Europe is between 101 and 377 Mt CO2e equivalent to between 12 and 61% of total EU27 livestock sector emissions in 2007. A reduction in food waste and consumption of livestock products linked with reduced production, are the most effective mitigation options, and if encouraged, would also deliver environmental and human health benefits. Production of beef and dairy on grassland, as opposed to intensive grain fed production, can be associated with a reduction in GHG emissions depending on actual LULUC emissions. This could be promoted on rough grazing land where appropriate.  相似文献   

8.
To‐date, forest resource‐based carbon accounting in land use, land use change and forestry (LULUCF) under the United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol (KP), European Union (EU) and national level emission reduction schemes considers only a fraction of its potential and fails to adequately mobilize the LULUCF sector for the successful stabilization of atmospheric greenhouse gas (GHG) concentrations. Recent modifications at the 2011 COP17 meetings in Durban have partially addressed this basic problem, but leave room for improvement. The presence of an Incentive Gap (IG) continues to justify reform of the LULUCF carbon accounting framework. Frequently neglected in the climate change mitigation and adaptation literature, carbon accounting practices ultimately define the nuts and bolts of what counts and which resources (forest, forest‐based or other) are favored and utilized. For Annex I countries in the Kyoto Mechanism, the Incentive Gap under forest management (FM) is significantly large: some 75% or more of potential forestry‐based carbon sequestration is not effectively incentivized or mobilized for climate change mitigation and adaptation (Ellison et al. 2011a). In this paper, we expand our analysis of the Incentive Gap to incorporate the changes agreed in Durban and encompass both a wider set of countries and a larger set of omitted carbon pools. For Annex I countries, based on the first 2 years of experience in the first Commitment Period (CP1) we estimate the IG in FM at approximately 88%. Though significantly reduced in CP2, the IG remains a problem. Thus our measure of missed opportunities under the Kyoto and UNFCCC framework – despite the changes in Durban – remains important. With the exception perhaps of increased energy efficiency, few sinks or sources of reduced emissions can be mobilized as effectively and efficiently as forests. Thus, we wonder at the sheer magnitude of this underutilized resource.  相似文献   

9.
European field experiments have demonstrated Miscanthus can produce some of the highest energy yields per hectare of all potential energy crops. Previous modelling studies using MISCANMOD have calculated the potential energy yield for the EU27 from mean historical climate data (1960–1990). In this paper, we have built on the previous studies by further developing a new Miscanthus crop growth model MISCANFOR in order to analyse (i) interannual variation in yields for past and future climates, (ii) genotype-specific parameters on yield in Europe. Under recent climatic conditions (1960–1990) we show that 10% of arable land could produce 1709 PJ and mitigate 30 Tg of carbon dioxide-carbon (CO2-C) equivalent greenhouse gasses (GHGs) compared with EU27 primary energy consumption of 65 598 PJ, emitting 1048 Tg of CO2-C equivalent GHGs in 2005. If we continue to use the clone Miscanthus × giganteus , MISCANFOR shows that, as climate change reduces in-season water availability, energy production and carbon mitigation could fall 80% by 2080 for the Intergovernmental Panel on Climate Change A2 scenario. However, because Miscanthus is found in a huge range of climates in Asia, we propose that new hybrids will incorporate genes conferring superior drought and frost tolerance. Using parameters from characterized germplasm, we calculate energy production could increase from present levels by 88% (to 2360 PJ) and mitigate 42 Tg of CO2-C equivalent using 10% arable land for the 2080 mid-range A2 scenario. This is equivalent to 3.6% of 2005 EU27 primary energy consumption and 4.0% of total CO2 equivalent C GHG emissions.  相似文献   

10.
森林在减缓全球气候变化和大气CO2浓度升高上具有重要作用.森林经营与管理下的新造林和森林保护具有显著的固碳功能,其中,新造林和森林保护的固碳速率分别为0.04~7.52、0.33~5.20 t C·hm-2·a-1.同时,营造林过程中物资的生产和运输导致边界内产生温室气体排放;营造林导致的活动转移、市场效应和生态环境变化导致边界外产生碳泄漏.本文综述了国内外森林经营与管理活动边界内温室气体排放源的界定、计量方法、温室气体排放量与排放速率;边界外碳泄漏的类型、计量方法与碳泄漏量;净固碳量以及温室气体排放和碳泄漏对固碳的抵消强度.边界内温室气体排放对固碳的抵消强度为0.01%~19.3%,进一步考虑碳泄漏时可增至95%.若仅考虑森林经营与管理在边界内直接产生的温室气体排放与可测量的活动转移碳泄漏,森林经营与管理具有较好的净固碳效益,且相比于农田固碳措施在温室气体净减排方面具有更好的应用前景.随着我国各项重大生态工程新一期的开展和对工程固碳效益的关注,为增加重大生态工程对温室气体的净减排量,有必要在工程开展前进行合理规划、在工程开展过程中加强控制和监测以减少工程实施导致的边界内温室气体排放和边界外碳泄漏.  相似文献   

11.
Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.  相似文献   

12.
Weenink  J. B. 《Plant Ecology》1993,(1):357-366
Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This, in turn, is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC).The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived.As a first step, governments of many industrialized countries have already set provisional national CO2 emission targets, aimed at stabilization at present levels by the year 2000 and, in some cases, reductions thereafter.Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing.  相似文献   

13.
This article outlines the contribution of international shipping to climate change and examines different approaches to regulate international shipping activities to reduce greenhouse gas (GHG) emissions. It considers challenges such as the allocation of GHG emissions to individual states, the selection of the most effective mitigation and regulatory measures, the potential for a disproportionate burden to fall upon developing states, and the debate about whether the United Nations (UN) or the International Maritime Organization (IMO) is the appropriate international authority to regulate emissions from international shipping.  相似文献   

14.
Mitigation of climate change (CC) is a regulating ecosystem service provided by priority habitats that is often co-delivered alongside their conservation of biodiversity. Carefully planned conservation management is thought necessary to support biodiversity adaptation to CC, but could also contribute to CC mitigation. This paper presents a methodology for assessing direct emissions of greenhouse gases (GHG: CO2, CH4 and N2O) from 12 UK priority habitats in 26 Special Areas of Conservation (SAC) using readily available data. Background emissions are estimated on the basis of published field research. The contribution of conservation management to GHG emission reduction is estimated using the IPCC GHG accounting methodology and other methods. Management Data Acquisition surveys carried out at selected SACs provided data on management practises for Scotland and Wales. Climate change mitigation actions identified in this study for priority habitats included livestock removal or change in stocking density, with GHG reduction potential of up to 3 tCO2e/animal/year, afforestation of acid grasslands—up to 19.4 tCO2e/ha/year, wetland restoration—0.3–0.8 tCO2e/ha/year and cessation of moorland burning—6.9 tCO2e/ha/year. Estimated GHG emissions from priority habitats can be used to identify win:win management options that co-deliver GHG mitigation, climate adaptation and conservation benefits for consideration by policy makers and conservation managers.  相似文献   

15.
Climate change poses significant emerging risks to biodiversity, ecosystem function and associated socioecological systems. Adaptation responses must be initiated in parallel with mitigation efforts, but resources are limited. As climate risks are not distributed equally across taxa, ecosystems and processes, strategic prioritization of research that addresses stakeholder‐relevant knowledge gaps will accelerate effective uptake into adaptation policy and management action. After a decade of climate change adaptation research within the Australian National Climate Change Adaptation Research Facility, we synthesize the National Adaptation Research Plans for marine, terrestrial and freshwater ecosystems. We identify the key, globally relevant priorities for ongoing research relevant to informing adaptation policy and environmental management aimed at maximizing the resilience of natural ecosystems to climate change. Informed by both global literature and an extensive stakeholder consultation across all ecosystems, sectors and regions in Australia, involving thousands of participants, we suggest 18 priority research topics based on their significance, urgency, technical and economic feasibility, existing knowledge gaps and potential for cobenefits across multiple sectors. These research priorities provide a unified guide for policymakers, funding organizations and researchers to strategically direct resources, maximize stakeholder uptake of resulting knowledge and minimize the impacts of climate change on natural ecosystems. Given the pace of climate change, it is imperative that we inform and accelerate adaptation progress in all regions around the world.  相似文献   

16.
湿地是重要的土地利用类型之一,在陆地生态系统碳循环中起重要作用。在缔约国向《联合国气候变化框架公约》提交的温室气体国家清单报告中,湿地作为"农业、林业及其他土地利用(AFOLU)"的一部分,因其不确定性较高而备受关注。自2006年以来,IPCC先后发布了《2006 IPCC国家温室气体清单指南》、《2013 IPCC 2006国家温室气体清单指南的增补:湿地》和《IPCC 2006年国家温室气体清单指南2019精细化》,为缔约国提供了清单编制的参考方法学。然而,IPCC指南中对湿地的定义和分类与中国现行的土地利用类型和并不统一,其提供的缺省参数对中国的研究亦未充分整合。因此,亟需在IPCC框架下开发适合中国的湿地温室气体清单方法学及参数库,以降低清单编制的不确定性。综述了IPCC湿地清单编制的方法学与中国湿地清单的研究进展,主要包括(1)比较了IPCC三部指南中的湿地清单的方法学,梳理了后两部对《2006 IPCC国家温室气体清单指南》在湿地类型、评估方法和缺省参数的更新内容;(2)比较了中国湿地清单编制与其他湿地温室气体研究结果的差异并探讨原因;(3)梳理了IPCC三部清单指南中湿地温室气体排放/清除因子数据库对来自中国的研究数据收录情况;(4)归纳了湿地的温室气体清单高层级方法学在中国的应用。在上述内容的归纳总结的基础上,基于现阶段我国在湿地温室气体清单编制方面存在活动水平数据难以获取、若干领域的排放因子缺失和评估方法不完善等问题,提出未来从提高活动水平数据透明度、加强人类活动影响评估、发展高层级方法学等方面改进。本文有助于提升我国编制湿地温室气体清单的能力,从而降低AFOLU领域对实现"碳中和"贡献的不确定性。  相似文献   

17.
农田土壤固碳措施的温室气体泄漏和净减排潜力   总被引:8,自引:0,他引:8  
逯非  王效科  韩冰  欧阳志云  郑华 《生态学报》2009,29(9):4993-5006
农田土壤固碳措施作为京都议定书认可的大气CO2减排途径受到了广泛关注.研究表明,农田土壤固碳措施在主要农业国家和全球都具有很大的固碳潜力.但是,实施农田土壤固碳措施有可能影响农业中化石燃料消耗和其他农业投入的CO2排放和非CO2温室气体排放.这些土壤碳库以外的温室气体排放变化可能抵消部分甚至全部土壤固碳效果,构成了农田土壤固碳措施的温室气体泄漏.因此,将土壤固碳和温室气体泄漏综合计算的净减排潜力成为了判定土壤固碳措施可行性的首要标准.综述总结了目前较受重视的一些农田措施(包括施用化学氮肥、免耕和保护性耕作、灌溉、秸秆还田、施用禽畜粪便以及污灌)的土壤固碳潜力,温室气体泄漏和净减排潜力研究成果.结果表明,温室气体泄漏可抵消以上措施土壤固碳效益的-241%~660%.建议在今后的研究中,应该关注土壤碳饱和、气候变化及土地利用变化对农田固碳措施温室气体泄漏和净减排潜力的评估结果的影响.  相似文献   

18.
We develop an alternative input–output approach and apply it to the determination of key sectors in emissions. This methodology allows us to assess and classify the different productive sectors according to their greenhouse gas emissions and the role that they play in the productive structure, as well as the participation of their output in the total volume of production. In contrast with previous approaches, we do not focus on the responsibility of final demand, but on the responsibility of the total production of each sector. We apply our methodology to the 2014 input–output table for Spain provided by the World Input–Output Database (2016). The results show that the sectors that induce more emissions from other sectors are manufacture of food products, wholesale and retail trade, and construction. Those that are pulled to emit coincide with those that are relevant for their own final demand, being the most important electricity and gas provision, agriculture, and transportation. The classification obtained allows to orient the design of greenhouse gas emission mitigation policies for the different sectors.  相似文献   

19.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO2, CH4, and N2O) in response to biochar application. Our results showed that biochar application significantly increased soil CO2 fluxes by 22.14%, but decreased N2O fluxes by 30.92% and did not affect CH4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO2 fluxes. However, soil CO2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation.  相似文献   

20.
Biofuels from developing countries The pressure for reducing greenhouse gas emissions, rising oil prices, but also the lobbying by the agricultural sector and the automotive industry have induced the recent boom on biofuels. Due to limited land availability, competition with food production and high overall environmental impacts, the sustainability market potential for biofuels is assumed to be significantly smaller than 10% of global fuel consumption. Nevertheless, niches for the sustainable production and use of biofuels exist especially in developing countries. It is often more sustainable to use biomass feedstock for local supply of electricity and heat than producing biofuels for export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号