首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hickory and peanut hydrochars were chemically activated with KOH and H3PO4 and tested for their ability to remove methylene blue and lead from aqueous solutions. The physicochemical characteristics of the activated hydrochars determined were surface area, pore volume, and elemental composition. Kinetics and isotherm studies were then conducted on methylene blue adsorption. Compared to their nonactivated counterparts, the chemically activated hydrochars had higher surface areas and more functional groups. Activated hydrochars also had greater methylene blue and lead adsorption rates, which can be attributed to the improved physicochemical characteristics. H3PO4 activated hydrochars removed more contaminants than the corresponding KOH ones.  相似文献   

2.
The present work reports the preparation of activated carbon fiber (ACF) from Kenaf natural fibers. Taguchi experimental design method was used to optimize the preparation of ACF using K2HPO4. Optimized conditions were: carbonization at 300 °C, impregnation with 30% w/v K2HPO4 solution and activation at 700 °C for 2 h with the rate of achieving the activation temperature equal to 2 °C min−1. The surface characteristics of the ACF prepared at optimized conditions were also studied using pore structure analysis, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Pore structure analysis shows that micropores constitute the most of the porosity of the prepared ACF. The ability of the ACF prepared at optimized conditions to adsorb phenol and p-nitrophenol from aqueous solution was also investigated. The equilibrium data of phenol and p-nitrophenol adsorption on the prepared ACF were well fitted to the Langmuir isotherm. The maximum adsorption capacities of phenol and p-nitrophenol on the prepared ACF are 140.84 and 136.99 mg g−1, respectively. The adsorption process follows the pseudo-first-order kinetic model.  相似文献   

3.

The adsorption behavior of the mussel adhesive protein Mytilus edulis foot protein‐1 (Mefp‐1) has been investigated on a negatively charged polar SiO2 surface and an electrically inert non‐polar CH3‐terminated thiolated gold surface. How the structure of adsorbed Mefp‐1 is changed upon chemically and enzymatically induced cross‐linking using sodium periodate (NaIO4) and catechol oxidase, both of which transform DOPA residues in Mefp‐1 into highly reactive o‐quinones, was also investigated. The results are compared with those resulting from addition of Cu2+ to adsorbed Mefp‐1, which forms complexes with and catalyses oxidation of DOPA residues, previously suggested to participate in the cohesive and adhesive properties of the byssus thread of M. edulis. By combining surface plasmon resonance (SPR) and quartz crystal microbalance/dissipation (QCM‐D) measurements, the effects of these agents were investigated with respect to changes in the amount of coupled water, the viscoelastic properties (rigidity) and the hydrodynamic thickness of the protein adlayers. The layer of Mefp‐1 formed on the bare CH3‐terminated surface was elongated, flexible and coupled hydrodynamically a substantial amount of water, whereas Mefp‐1 formed a rigidly attached adlayer on the SiO2 surface. Upon enzymatically and chemically induced cross‐linking of Mefp‐1 formed on the CH3 surface, the rigidity of the adlayer(s) increased significantly. A similar increase in the rigidity was observed also upon addition of Cu2+, suggesting that the high level of metal ions present in the byssus thread might be essential for the cohesive and adhesive properties of this protein. For the mass‐uptake kinetics of enzymatically induced cross‐linking, three different phases were observed and are interpreted as competition between binding of protein and release of coupled water. For the reaction with NaIO4 and Cu2+, only release of water affected the coupled mass. The importance of this type of information for an improved understanding of the strong adhesion and cohesive properties in marine environments is discussed.  相似文献   

4.
Effective in situ staining of crustacean nerves was achieved with leuco methylene blue reduced with either ascorbic acid or sodium hydrosulfite (Na2S2O4). A stock solution of methylene blue, 0.4% (ca. 0.001 M), and the reductants, ascorbic acid or sodium hydrosulfite (0.01 M), were prepared in van Harreveld's crayfish physiological solution. Methylene blue stock solution was mixed with either of the reductants in the approximate ratio of 1:10, v/v, and titrated to the end point. Ascorbic acid reduction is light catalyzed and requires intense illumination during titration. The cleared or leucomethylene blue stock solution is suitable for immediate use as a working nerve stain. With either reductant, the working solution oxidizes on standing in air, but can be titrated repeatedly without loss of staining properties. Dissected nerve trunks or tissue were immersed in the working stain for 20 min at room temperature and the staining process observed until suitable contrast developed. Excess dye was decanted and the tissues flooded with crayfish physiological solution. Contrast could sometimes be enhanced by flooding the stained area with 1% hydrogen peroxide in van Harreveld's solution. When permanent mounts were prepared, tissues were dehydrated with tertiary butyl alcohol in preference to ethyl alcohol series. For anatomical and neurophysiological studies of nerve distribution in crustaceans, the alternative use of either ascorbic acid or sodium hydrosulfite, as reductants for methylene blue, was preferable to the more complicated rongalit-technique and characterization of neural elements was fully as satisfactory.  相似文献   

5.
This study contributes to the investigation related to guest–host interactions between the chemotherapeutic agent cisplatin and a functionalised silica matrix in order to improve and find new materials such as drug carriers. The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a SH-functionalised SiO2(111) surface has been studied by the atom superposition and electron delocalisation method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule and their complex are adsorbed on the functionalised surface resulting in a major absorption of the cis-[Pt(NH3)2]2+ complex. The molecule–surface interactions are formed via –SH group. The molecule/complexes SH electron-donating effect plays an important role in the catalytic reaction. The more important drug–carrier interactions occur through the Cl–H bond for the adsorption of cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+, and through the Pt–S and Pt–H interactions for cis-[Pt(NH3)2]2+ adsorption. When the new interactions are formed, the functionalised carrier maintains their matrix properties while the molecule is the most affected after adsorption. The Pt atomic orbitals present the most important changes during adsorption.  相似文献   

6.
Samples of the Ba9(Lu2‐xYx)Si6O24:Ce3+ (x = 0–2) blue‐green phosphors were synthesized by solid‐state reactions. All the samples exhibited a rhombohedral crystal structure. As the Y3+ concentration increased, the diffraction peaks shifted to the small angle region and the lattice parameters increased due to the larger ionic radius of Y3+ (r = 0.900 Å) compared with that of Lu3+ (r = 0.861 Å). Under 400 nm excitation, samples exhibited strong blue‐green emissions around 490 nm. The emission bands had a slight blue shift that resulted from weak crystal‐field splitting with increasing Y3+ concentration. Luminescence intensity and quantum efficiency (QE) decreased with increasing Y3+ concentration. The internal QE decreased from 74 to 50% and the external QE decreased from 50 to 34% as x increased from 0 to 2. The thermal stability of the Lu series was better than that of the Y‐series. The excitation band peak around 400 nm matched well with the emission light from the efficient near‐ultraviolet (NUV) chip. These results indicate promising applications for these NUV‐based white light‐emitting diodes.  相似文献   

7.
Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8), was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR) from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g?1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions) may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn?OH on ZIF-8 -and ?SO3 or –N=N– sites in CR molecule, and the ππ interaction.  相似文献   

8.
The vast majority of pelagic bioluminescent organisms emit a blue light with emission maxima (λmax) ranging from 450 to 490 nm. Among the known outliers, the tomopterids (Annelida: Polychaeta) are usually described as yellow‐emitters (λmax = 565–570 nm) for which bioluminescence functions as a specific recognition signal. Here, we report the first data regarding the colours emitted by four different tomopterid species, Tomopteris pacifica, T. carpenteri, T. septentrionalis and T. planktonis. Surprisingly, T. planktonis is a blue‐emitter (λmax = 450 nm). Our pharmacological results on T. planktonis support cholinergic control, as recently demonstrated in the yellow‐emitter, T. helgolandica. Moreover, as revealed by epifluorescence microscopy, the light seems to be produced in both species from the same yellow‐pigmented parapodial glands. Despite these similarities, tomopterids express an unexpected diversity of bioluminescent colour patterns. This leads us to reassess the ecological value of bioluminescence within this group.  相似文献   

9.
The influence of process variables in batch adsorption has been used to assess the removal of methylene blue dye from aqueous solution using pure and carbonized biomasses of water hyacinth and water spinach. Dried leaves of the water weeds were carbonized at temperature up to 750°C. The optimum removal of dye was achieved at pH 10, 30°C, and 55 min at a dye concentration of 10 mg/L. In an attempt to describe the adsorption process, the equilibrium isotherm for each adsorbent was determined using Langmuir and Freundlich adsorption isotherm models. Maximum adsorption capacities based on the Langmuir model for pure and carbonized water hyacinth were (mg/g) 7.05 and 2.07, respectively, whereas those of pure and carbonized water spinach were 1.25 and 5.32, respectively. It was observed that the equilibrium data were well fit by both the Freundlich and Langmuir isotherms as R 2 > .97. This study demonstrates that the two waterweeds are effective, environmentally friendly, and inexpensive biomaterials for the removal of color from industrial effluents.  相似文献   

10.
Phenylboronate chromatography has been employed for bioseparation applications though details concerning the mechanisms of interaction between the ligand and macromolecules remain widely unknown. Here, the phenomena underlying the adsorption of an anti‐human interleukin‐8 (anti‐IL8) monoclonal antibody (mAb) onto an m‐aminophenylboronic acid (m‐APBA) ligand in the presence of different mobile‐phase modulators (NaF/MgCl 2/(NH 4) 2SO 4) and under different pH values (7.5/8.5/9.0) is investigated. Flow microcalorimetry (FMC) is applied to measure instantaneous heat energy transfer, providing insights about the role of specific and nonspecific interactions involved in the adsorptive process. Results show that the adsorption of anti‐IL8 mAb to m‐APBA is enthalpically driven, corroborating the presence of the reversible esterification reaction between boronic acid or boronates and cis‐diol‐containing molecules. Nevertheless, for all mobile‐phase modulators studied, changes in thermogram profiles are observed as well as reductions in the net heat of adsorption when increasing the pH. Overall, FMC and parallel chromatographic experiments data suggest that ligand salt tolerance could be enhanced using mobile‐phase modulators, with all salts studied promoting the specific cis‐diol interactions and reducing nonspecific interactions. The last feature is more noticeable at pH values above ligand's pK a, mainly due to the ability of NaF and (NH 4) 2SO 4 to diminish electrostatic interactions when compared to the commonly used NaCl.  相似文献   

11.
12.
The performance of first‐generation hybrids determines to a large extent the long‐term outcome of hybridization in natural populations. F1 hybrids can facilitate further gene flow between the two parental species, especially in animal‐pollinated flowering plants. We studied the performance of reciprocal F1 hybrids between Rhinanthus minor and R. major, two hemiparasitic, annual, self‐compatible plant species, from seed germination to seed production under controlled conditions and in the field. We sowed seeds with known ancestry outdoors before winter and followed the complete life cycle until plant death in July the following season. Germination under laboratory conditions was much lower for the F1 hybrid formed on R. major compared with the reciprocal hybrid formed on R. minor, and this confirmed previous results from similar experiments. However, this difference was not found under field conditions, which seems to indicate that the experimental conditions used for germination in the laboratory are not representative for the germination behaviour of the hybrids under more natural conditions. The earlier interpretation that F1 hybrid seeds formed on R. major face intrinsic genetic incompatibilities therefore appears to be incorrect. Both F1 hybrids performed at least as well as and sometimes better than R. minor, which had a higher fitness than R. major in one of the two years in the greenhouse and in the field transplant experiment. The high fitness of the F1 hybrids confirms findings from naturally mixed populations, where F1 hybrids appear in the first year after the two species meet, which leads to extensive advanced‐hybrid formation and introgression in subsequent generations.  相似文献   

13.
Histamine was immobilized on Sepharose CL‐6B (Sepharose) for use as a ligand of hydrophobic charge induction chromatography (HCIC) of proteins. Lysozyme adsorption onto Histamine‐Sepharose (HA‐S) was studied by adsorption equilibrium and calorimetry to uncover the thermodynamic mechanism of the protein binding. In both the experiments, the influence of salt (ammonium sulfate and sodium sulfate) was examined. Adsorption isotherms showed that HA‐S exhibited a high salt tolerance in lysozyme adsorption. This property was well explained by the combined contributions of hydrophobic interaction and aromatic stacking. The isotherms were well fitted to the Langmuir equation, and the equilibrium parameters for lysozyme adsorption were obtained. In addition, thermodynamic parameters (ΔHads, ΔSads, and ΔGads) for the adsorption were obtained by isothermal titration calorimetry by titrating lysozyme solutions into the adsorbent suspension. Furthermore, free histamine was titrated into lysozyme solution in the same salt‐buffers. Compared with the binding of lysozyme to free histamine, lysozyme adsorption onto HA‐S was characterized by a less favorable ΔGads and an unfavorable ΔSads because histamine was covalently attached to Sepharose via a three‐carbon‐chain spacer. Consequently, the immobilized histamine could only associate with the residues on the protein surface rather than those in the hydrophobic pocket, causing a less favorable orientation between histamine and lysozyme. Further comparison of thermodynamic parameters indicated that the unfavorable ΔSads was offset by a favorable ΔHads, thus exhibiting typical enthalpy‐entropy compensation. Moreover, thermodynamic analyses indicated the importance of the dehydration of lysozyme molecule and HA‐S during the adsorption and a substantial conformational change of the protein during adsorption. The results have provided clear insights into the adsorption mechanisms of lysozyme onto the new HCIC material. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

15.
Luminescent lanthanide (III) ions have been exploited for circularly polarized luminescence (CPL) for decades. However, very few of these studies have involved chiral samarium (III) complexes. Complexes are prepared by mixing axial chiral ligands (R/S))‐2,2’‐bis(diphenylphosphoryl)‐1,1′‐binaphthyl (BINAPO) with europium and samarium Tris (trifluoromethane sulfonate) (Eu (OTf)3 and Sm (OTf)3). Luminescence‐based titration shows that the complex formed is Ln((R/S)‐BINAPO)2(OTf)3, where Ln = Eu or Sm. The CPL spectra are reported for Eu((R/S)‐BINAPO)2(OTf)3 and Sm((R/S)‐BINAPO)2(OTf)3. The sign of the dissymmetry factors, gem, was dependent upon the chirality of the BINAPO ligand, and the magnitudes were relatively large. Of all of the complexes in this study, Sm((S)‐BINAPO)2(OTf)3 has the largest gem = 0.272, which is one of the largest recorded for a chiral Sm3+ complex. A theoretical three‐dimensional structural model of the complex that is consistent with the experimental observations is developed and refined. This report also shows that (R/S)‐BINAPO are the only reported ligands where gem (Sm3+) > gem (Eu3+).  相似文献   

16.
Dehydrogenation of ascorbic acid and reduced nicotinamide adenine dinucleotide (NADH) with methylene blue using complexes of the type [Fe(II)(CN)5 (L)] n (wheren=3 or 4; L=glycine, histidine, imidazole, and triglycine) as catalyst have been studied at pH 9.18. Similar kinetic behavior was observed for the dehydrogenation of ascorbic acid as well as for NADH; both reactions showed first order dependency on the substrates. First order dependence was observed only at lower concentrations of methylene blue; at higher concentrations of methylene blue, the reactions were independent of methylene blue. The order with respect to catalyst varied between 0.3–0.5. A tentative mechanism which conforms to the observed kinetics has been proposed. It is believed that on the primitive earth when the reducing potential of the atmosphere was not high enough, lower oxidation state iron complexes like [Fe(II)(CN)5(L)] n might have been involved in dehydrogenase-type activity.  相似文献   

17.
Plants produce short‐chain aldehydes and hydroxy fatty acids, which are important industrial materials, through the lipoxygenase pathway. Based on the information that lipoxygenase activity is up‐regulated in tobacco leaves upon infection with tobacco mosaic virus (TMV), we introduced a melon hydroperoxide lyase (CmHPL) gene, a tomato peroxygenase (SlPXG) gene and a potato epoxide hydrolase (StEH) into tobacco leaves using a TMV‐based viral vector system to afford aldehyde and hydroxy fatty acid production. Ten days after infiltration, tobacco leaves infiltrated with CmHPL displayed high enzyme activities of 9‐LOX and 9‐HPL, which could efficiently transform linoleic acid into C9 aldehydes. Protein extracts prepared from 1 g of CmHPL‐infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of control vector‐infiltrated tobacco leaves (as an additional 9‐LOX source) produced 758 ± 75 μg total C9 aldehydes in 30 min. The yield of C9 aldehydes from linoleic acid was 60%. Besides, leaves infiltrated with SlPXG and StEH showed considerable enzyme activities of 9‐LOX/PXG and 9‐LOX/EH, respectively, enabling the production of 9,12,13‐trihydroxy‐10(E)‐octadecenoic acid from linoleic acid. Protein extracts prepared from 1 g of SlPXGinfiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of StEH‐infiltrated tobacco leaves produced 1738 ± 27 μg total 9,12,13‐trihydroxy‐10(E)‐octadecenoic acid isomers in 30 min. The yield of trihydroxyoctadecenoic acids from linoleic acid was 58%. C9 aldehydes and trihydroxy fatty acids could likely be produced on a larger scale using this expression system with many advantages including easy handling, time‐saving and low production cost.  相似文献   

18.
A new Methylene blue–based 7-nitro-1,2,3-benzoxadiazole NIR fluorescent probe 3, 7-bis-dimethylamino-10-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-10H-phenothiazine (leuco-MB-NBD) was designed and synthesized. Leuco-MB-NBD showed high sensitivity and selectivity for H2S as a fluorescent probe in C2H5OH-PBS (9:1, v/v, pH = 7.4) solution, this fluorescent assay showed a linear range of 0–50.0 μM and a LOD (limit of detection) of 0.43 μM. Moreover, the probe leuco-MB-NBD has lower toxicity at low concentrations to HCT-116 cells and can be used for cell imaging. Additionally, Leuco-MB-NBD is triggered by hydrogen sulfide to generate methylene blue, methylene blue which has potential rescuing effects on the mitochondrial activity can act as an antidote against sulfide intoxication.  相似文献   

19.
Action mechanisms underlying various biological activities of collagen peptides (CPs) remained to be elucidated. Cytokines may play an important role in mediating these health benefits of CPs. This study aimed to systemically examine the cytokines in skin and blood regulated by CPs intake. Thirteen‐month‐old female Kunming mice were administered with CPs for 2 months (0 or 400 mg/kg bodyweight/day). The cytokines in skin and plasma were analysed using a 53‐cytokine array and corresponding ELISA kits. In skin, CPs intake significantly down‐regulated placenta growth factor (PIGF‐2), insulin‐like growth factor (IGF)‐binding protein (IGFBP) ‐2 and IGFBP‐3, and up‐regulated platelet factor 4 (PF4), serpin E1 and transforming growth factor (TGF)‐β1. CPs treatment also increased the type I collagen mRNA and protein levels and improved the aged skin collagen fibres. In plasma, nine cytokines were significantly down‐regulated by CPs intake compared to the model group: fibroblast growth factor (FGF)‐2, heparin‐binding (HB) epidermal growth factor (EGF)‐like growth factor (HB‐EGF), hepatocyte growth factor (HGF), platelet‐derived growth factor (PDGF)‐AB/BB, vascular endothelial growth factor (VEGF), chemokine (C‐X‐C motif) ligand 1 (KC), matrix metalloproteinase (MMP)‐9, interleukin (IL)‐1α and IL‐10; 2 cytokines were significantly up‐regulated, including TGF‐β1 and serpin F1. Furthermore, CPs intake significantly decreased the level of platelet release indicators in the plasma and washed platelets, including PF4, granule membrane protein (GMP)‐140, β‐thromboglobulin and serotonin. These results provide a mechanism underlying anti‐skin ageing by CPs intake and highlight potential application of CPs as a healthcare supplement to combat cancer and cardiovascular disease by inhibiting platelet release.  相似文献   

20.
Lipase from Arthrobacter sp. was immobilized onto low-cost diatomite materials using different protocols for the resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one (HMPC) by asymmetric acylation. The support surface was grafted various functional groups including methacryloxypropyl, vinyl, octyl, dodecyl and γ-(aminopropyl)-glutaraldehyde. These modifications resulted in various mechanisms during the immobilization and thus introduced different characteristics to the prepared lipases. The interfacially adsorbed lipase onto dodecyl-modified support exhibited both higher activity and stability among these immobilized preparations. The modified enzyme-aggregate coating method was performed based on interfacial adsorption in our work, and the characteristics of this immobilized lipase were investigated and compared with those by cross-linking and interfacial adsorption methods. It was shown that the enzyme-aggregate coated lipase yielded the highest activity with a recovered activity of 8.5-fold of the free enzyme, and the highest operational stability with 85% of initial activity remained after 10 recycles. Excellent enantioselectivity (E ≥ 400, with e.e. = 99% of S-HMPC) was obtained for most lipase preparations in our paper (E = 85 for the free enzyme).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号