首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three PBDEs (BDE25, BDE47, and BDE154) were selected to investigate the interactions between PBDEs and hen egg white lysozyme (HEWL) by molecular modeling, fluorescence spectroscopy, and FT‐IR spectra. The docking results showed that hydrogen bonds were formed between BDE25 and residue TRP63 and between BDE47 and TRP63 with bond lengths of 2.178 Å and 2.146 Å, respectively. The molecular dynamics simulations indicated that van der Waals forces played a predominant role in the binding of three PBDEs to HEWL. The observed fluorescence quenching can be attributed to the formation of complexes between HEWL and PBDEs, and the quenching mechanism is a static quenching. According to Förster's non‐radiative energy transfer theory, the binding distances r were < 7 nm, indicating a high probability of energy transfer from HEWL to the three PBDEs. The synchronous fluorescence showed that the emission maximum wavelength of tryptophan (TRP) residues emerged a red‐shift. FT‐IR spectra indicated that BDE25, BDE47 and BDE154 induced the α‐helix percentage of HEWL decreased from 32.70% ± 1.64% to 28.27% ± 1.41%, 27.50% ± 1.38% and 29.78% ± 1.49%, respectively, whereas the percentage of random coil increased from 26.67% ± 1.33% to 27.60% ± 1.38%, 29.18% ± 1.46% and 30.59% ± 1.53%, respectively.  相似文献   

2.
The interaction between cyproheptadine hydrochloride (CYP) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and molecular modeling at a physiological pH (7.40). Fluorescence of HSA was quenched remarkably by CYP and the quenching mechanism was considered as static quenching since it formed a complex. The association constants Ka and number of binding sites n were calculated at different temperatures. According to Förster's theory of non‐radiation energy transfer, the distance r between donor (human serum albumin) and acceptor (cyproheptadine hydrochloride) was obtained. The effect of common ions on the binding constant was also investigated. The effect of CYP on the conformation of HSA was analyzed using FT‐IR, synchronous fluorescence spectroscopy and 3D fluorescence spectra. The thermodynamic parameters ΔH and ΔS were calculated to be ?14.37 kJ mol?1 and 38.03 J mol?1 K?1, respectively, which suggested that hydrophobic forces played a major role in stabilizing the HSA‐CYP complex. In addition, examination of molecular modeling indicated that CYP could bind to site I of HSA and that hydrophobic interaction was the major acting force, which was in agreement with binding mode studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA).  相似文献   

4.
In this article, a facile and convenient synthesis of thiazol‐2(3H)‐ylidine derivatives of fatty acid ( 3a – c ) is described. The binding of N′‐(4,5‐dimethyl‐3‐penylthiazol‐2(3H)‐ylidine)octadec‐9‐enehydrazide ( 3a ) with human serum albumin (HSA) is explored using various spectral methods and molecular docking. Fluorescence quenching results show that 3a induces conformational changes in HSA and the polarity around the tryptophan residues is increased. Stern–Volmer quenching plots at different temperatures (298, 305 and 312 K) show that the fluorescence quenching mechanism is static quenching. Synchronous fluorescence, 3D fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy are used to determine the structural change in HSA on interaction with 3a . Förster resonance energy transfer analysis shows that the binding distance (r0 = 2.78 nm) between HSA (Trp214) and 3a is within the of range 2–8 nm for quenching to occur. The molecular docking study also confirms that 3a is located in subdomain IIA (site I) of HSA and is stabilized by hydrogen bonding and hydrophobic forces.  相似文献   

5.
The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three‐dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non‐radiation energy transfer. The quenching constants KSV, binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non‐radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX–pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between the food colorant canthaxanthin (CA) and human serum albumin (HSA) in aqueous solution was explored by using fluorescence spectroscopy, three‐dimensional fluorescence spectra, synchronous fluorescence spectra, UV–vis absorbance spectroscopy, circular dichroism (CD) spectra and molecular docking methods. The thermodynamic parameters calculated from fluorescence spectra data showed that CA could result in the HSA fluorescence quenching. From the KSV change with the temperature dependence, it was concluded that HSA fluorescence quenching triggered by CA is the static quenching and the number of binding sites is one. Furthermore, the secondary structure of HSA was changed with the addition of CA based on the results of synchronous fluorescence, three‐dimensional fluorescence and CD spectra. Hydrogen bonds and van der Waals forces played key roles in the binding process of CA with HSA, which can be obtained from negative standard enthalpy (ΔH) and negative standard entropy (ΔS). Furthermore, the conclusions were certified by molecular docking studies and the binding mode was further analyzed with Discovery Studio. These conclusions can highlight the potential of the interaction mechanism of food additives and HSA.  相似文献   

7.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

8.
Icariin is a flavonol glycoside with a wide range of pharmacological and biological activities. The pharmacological and biological functions of flavonoid compounds mainly originate from their binding to proteins. The mode of interaction of icariin with human serum albumin (HSA) has been characterized by fluorescence spectroscopy and far‐ and near‐UV circular dichroism (CD) spectroscopy under different pH conditions. Fluorescence quenching studies showed that the binding affinity of icariin with HSA in the buffer solution at different pH values is: Ka (pH 4.5) > Ka (pH 3.5) > Ka (pH 9.0) > Ka (pH 7.0). Red‐edge excitation shift (REES) studies revealed that pH had an obvious effect on the mobility of the tryptophan microenvironment and the addition of icariin made the REES effect more distinct. The static quenching mechanism and number of binding sites (n ≈ 1) were obtained from fluorescence data at three temperatures (298, 304 and 310 K). Both ?H0 < 0 and ??0 < 0 suggested that hydrogen bonding and van der Waal's interaction were major driving forces in the binding mechanism, and this was also confirmed by the molecular simulation results. The distance r between the donor (HSA) and the acceptor (icariin) was calculated based on Förster non‐radiation energy transfer theory. We found that pH had little impact on the energy transfer between HSA and icariin. Far‐ and near‐UV CD spectroscopy studies further indicated the influence of pH on the complexation process and the alteration in the protein conformation upon binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular‐docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three‐dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular‐docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8‐anilino‐1‐naphthalenesulfonic acid, was changed with norgestrel addition.  相似文献   

10.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction between 4-(4-fluorobenzylideneamino)-5-propyl-4H-1,2,4-triazole-3-thiol (FBTZ) and human serum albumin (HSA) under simulative physiological conditions was investigated by fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy as well as molecular modeling method. Fluorescence spectroscopic data showed that the fluorescence quenching of HSA was a result of the formation of FBTZ–HSA complex. According to the modified Stern–Volmer equation, the effective quenching constants (K a) of FBTZ to HSA were obtained at three different temperatures. The enthalpy change (ΔH) and entropy change (ΔS) were calculated on the basis of van′t Hoff equation, and the results showed that hydrogen-bonding and van der Waals forces were the dominant intermolecular forces to stabilize the complex. Site marker competitive replacement experiments demonstrated that the binding of FBTZ to HSA primarily took place in sub-domain IIA (Sudlow’s site I). The binding distance (r) between FBTZ and the tryptophan residue of HSA was estimated according to the theory of fluorescence resonance energy transfer. The conformational investigation showed that the presence of FBTZ induced some changes of secondary structure of HSA. Molecular modeling study further confirmed the binding mode obtained by experimental study.  相似文献   

12.
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6‐diaminoacridine derivatives obtained from proflavine, which are 3,6‐diphenoxycarbonyl aminoacridine and 3,6‐diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet‐visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA‐derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern‐Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6‐diethoxycarbonyl aminoacridine, 3,6‐diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non‐radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C12-4-C12im]Br2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C12-4-C12im]Br2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern–Volmer quenching constant (Ksv) and relevant thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy change (ΔG) and entropy change (ΔS) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C12-4-C12im]Br2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C12-4-C12im]Br2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system.  相似文献   

14.
The binding of small molecular drugs with human serum albumin (HSA) has a crucial influence on their pharmacokinetics. The binding interaction between the antihypertensive eplerenone (EPL) and HSA was investigated using multi-spectroscopic techniques for the first time. These techniques include ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR), native fluorescence spectroscopy, synchronous fluorescence spectroscopy and molecular docking approach. The fluorescence spectroscopic study showed that EPL quenched HSA inherent fluorescence. The mechanism for quenching of HSA by EPL has been determined to be static in nature and confirmed by UV absorption and fluorescence spectroscopy. The modified Stern–Volmer equation was used to estimate the binding constant (Kb) as well as the number of bindings (n). The results indicated that the binding occurs at a single site (Kb = 2.238 × 103 L mol−1at 298 K). The enthalpy and entropy changes (∆H and ∆S) were 58.061 and 0.258 K J mol−1, respectively, illustrating that the principal intermolecular interactions stabilizing the EPL–HSA system are hydrophobic forces. Synchronous fluorescence spectroscopy revealed that EPL binding to HSA occurred around the tyrosine (Tyr) residue and this agreed with the molecular docking study. The Förster resonance energy transfer (FRET) analysis confirmed the static quenching mechanism. The esterase enzyme activity of HSA was also evaluated showing its decrease in the presence of EPL. Furthermore, docking analysis and site-specific markers experiment revealed that EPL binds with HSA at subdomain IB (site III).  相似文献   

15.
Diamine‐sarcophagine (DiAmsar) binding to human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under simulative physiological conditions. Fluorescence spectra in combination with Fourier transform infrared (FT‐IR), UV‐visible (UV–vis) spectroscopy, cyclic voltammetry (CV), and molecular docking method were used in the present work. Experimental results revealed that DiAmsar had an ability to quench the HSA and BSA intrinsic fluorescence through a static quenching mechanism. The Stern–Volmer quenching rate constant (Ksv) was calculated as 0.372 × 103 M‐1 and 0.640 × 103 M‐1 for HSA and BSA, respectively. Moreover, binding constants (Ka), number of binding sites (n) at different temperatures, binding distance (r), and thermodynamic parameters (?H°, ?S°, and ?G°) between DiAmsar and HSA (or BSA) were calculated. DiAmsar exhibited good binding propensity to HSA and BSA with relatively high binding constant values. The positive ?H° and ?S° values indicated that the hydrophobic interaction is main force in the binding of the DiAmsar to HSA (or BSA). Furthermore, molecular docking results revealed the possible binding site and the microenvironment around the bond. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M?1 for HSA and 0.1363 × 103 M?1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.  相似文献   

17.
The interaction between two proton pump inhibitors viz., omeprazole (OME) and esomeprazole (EPZ) with human serum albumin (HSA) was studied by fluorescence, absorption, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), voltammetry, and molecular modeling approaches. The Stern–Volmer quenching constants (Ksv) for OME-HSA and EPZ-HSA systems obtained at different temperatures revealed that both OME and EPZ quenched the intensity of HSA through dynamic mode of quenching mechanism. The binding constants of OME-HSA and EPZ-HSA increased with temperature, indicating the increased stability of these systems at higher temperatures. Thermodynamic parameters viz., ?H°, ?S°, and ?G° were determined for both systems. These values revealed that both systems were stabilized by hydrophobic forces. The competitive displacement and molecular docking studies suggested that OME/EPZ was bound to Sudlow’s site I in subdomain IIA in HSA. The extent of energy transfer from HSA to OME/EPZ and the distance of separation in tryptophan (Trp214) Trp214-OME and Trp214-EPZ was determined based on the theory of fluorescence resonance energy transfer. UV absorption, 3D fluorescence, and CD studies indicated that the binding of OME/EPZ to HSA has induced micro environmental changes around the protein which resulted changes in its secondary structure.  相似文献   

18.
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The goal of this study was to investigate the interactions between meclizine (MEC) and human serum albumin (HSA) under physiological conditions by different spectroscopies and molecular modeling technique. The drug, MEC quenched the intrinsic fluorescence of HSA and the analysis of the results revealed that static quenching mechanism. The binding of MEC quenches the HSA fluorescence; stoichiometry was 1:1 interaction. Thermodynamic quantities were calculated at different temperatures suggested that hydrophobic and van der Waals interaction with HSA–MEC. The molecular distance, r, between donor and acceptor was estimated according to Forster’s theory of non-radiation energy transfer. CD and FT-IR studies confirm changes of secondary structure of HSA. Molecular docking studies validate MEC molecule interact to HSA in sub domain IIA.  相似文献   

20.
In this study, the interaction between human serum albumin (HSA) and a copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2], was studied in vitro using multi‐spectroscopic methods. It was found that the intrinsic fluorescence of HSA was quenched by the addition of the [Cu(carmoisine)2(H2O)2] complex and the quenching mechanism was considered as static quenching by formation of a [Cu(carmoisine)2(H2O)2]–HSA complex. The binding constant was about 104 M?1 at room temperature. The values of the calculated thermodynamic parameters (ΔH < 0 and ΔS > 0) suggested that both hydrogen bonds and the hydrophobic interactions were involved in the binding process. The site marker competitive experiments revealed that the binding of [Cu(carmoisine)2(H2O)2] to HSA primarily occurred in subdomain IIIA (site II) of HSA. The results of circular dichroism (CD) and UV–vis spectroscopy showed that the micro‐environment of amino acid residues and the conformation of HSA were changed after addition of the [Cu(carmoisine)2(H2O)2] complex. Finally, the binding of the [Cu(carmoisine)2(H2O)2] complex to HSA was modelled by a molecular docking method. Excellent agreement was obtained between the experimental and theoretical results with respect to the binding forces and binding constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号