首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dead animal biomass (carrion) is present in all terrestrial ecosystems, and its consumption, decomposition, and dispersal can have measurable effects on vertebrates, invertebrates, microbes, parasites, plants, and soil. But despite the number of studies examining the influence of carrion on food webs, there has been no attempt to identify how general ecological processes around carrion might be used as an ecosystem indicator. We suggest that knowledge of scavenging and decomposition rates, scavenger diversity, abundance, and behavior around carrion, along with assessments of vegetation, soil, microbe, and parasite presence, can be used individually or in combination to understand food web dynamics. Monitoring carrion could also assist comparisons of ecosystem processes among terrestrial landscapes and biomes. Although there is outstanding research needed to fully integrate carrion ecology and monitoring into ecosystem management, we see great potential in using carrion as an ecosystem indicator of an intact and functional food web.  相似文献   

2.
Environmental factors and biodiversity affect ecosystem processes. As environmental change modifies also biodiversity it is unclear whether direct effects of environmental factors on ecosystem processes are more important than indirect effects mediated by changes in biodiversity. High-quality resources like carrion occur as heterogeneous pulses of energy and nutrients. Consequently, the distribution of scavenging insects is related to resource availability. Therefore, carrion decomposition represents a suitable process from which to unravel direct effects of environmental change from indirect biodiversity-related effects on ecosystem processes. During three field seasons in 2010 we exposed traps baited with small-mammal carrion at 21 sites along a temperature gradient to explore the insect carrion fauna and decomposition rate in the Bohemian Forest, Germany. The abundance component of beetle and fly assemblages decreased with decreasing temperature. Independently, the composition component of both taxa changed with temperature and season. The change in the composition component of beetles depicted a loss of larger species at higher temperatures. Decomposition rate did not change directly along the temperature gradient but was directly influenced by season. The composition component of beetles, and to a small extent of flies, but not their abundance component, directly affected carrion decomposition. Consequently, lower decomposition rates at lower temperatures can be explained by the absence of larger beetle species. Thus, we predict that future environmental change will modify carrion fauna composition and thereby indirectly decomposition rate. Moreover, reorganizations of the insect carrion composition will directly translate into modified decomposition rates, with potential consequences for nutrient availability and carbon storage.  相似文献   

3.
The principles of modern aquaculture encourage the development of fish feeds containing low fish meal content and several types of plant ingredients plus nutrients to avoid depleting global fish stocks and to reduce costs. However, food constituents can affect animal nutrition and feeding behavior, so the effect of different diets on fish behavior and growth needs to be understood to optimize the use of nutrients and to improve fish welfare. The development of multiple-choice self-feeding systems led to a new perspective for investigating these issues in aquaculture species. Our purpose with this review is to summarize the information that has been published to date on this topic and to identify gaps in knowledge where research is needed. Key subjects are assessed under the following major headings: How do we study dietary selection in fish? What food signals do fish use to choose the right diet? and How do fish respond to food challenges? The present review will provide a picture of the main results obtained to date in these studies in aquaculture fish species, as well as perspectives for future research in the field.  相似文献   

4.
The transport of resource subsidies by animals has been documented across a range of species and ecosystems. Although many of these studies have shown that animal resource subsidies can have significant effects on nutrient cycling, ecosystem productivity, and food‐web structure, there is a great deal of variability in the occurrence and strength of these effects. Here we propose a conceptual framework for understanding the context dependency of animal resource subsidies, and for developing and testing predictions about the effects of animal subsidies over space and time. We propose a general framework, in which abiotic characteristics and animal vector characteristics from the donor ecosystem interact to determine the quantity, quality, timing, and duration (QQTD) of an animal input. The animal input is translated through the lens of recipient ecosystem characteristics, which include both abiotic and consumer characteristics, to yield the QQTD of the subsidy. The translated subsidy influences recipient ecosystem dynamics through effects on both trophic structure and ecosystem function, which may both influence the recipient ecosystem's response to further inputs and feed back to influence the donor ecosystem. We present a review of research on animal resource subsidies across ecosystem boundaries, placed within the context of this framework, and we discuss how the QQTD of resource subsidies can influence trophic structure and ecosystem function in recipient ecosystems. We explore the importance of understanding context dependency of animal resource subsidies in increasingly altered ecosystems, in which the characteristics of both animal vectors and donor and recipient ecosystems may be changing rapidly. Finally, we make recommendations for future research on animal resource subsidies, and resource subsidies in general, that will increase our understanding and predictive capacity about their ecosystem effects.  相似文献   

5.
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human‐induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human‐induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.  相似文献   

6.
Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.  相似文献   

7.
The supply and demand of omega‐3 highly unsaturated fatty acids (ω‐3 HUFA) in natural ecosystems may lead to resource limitation in a diverse array of animal taxa. Here, we review why food quality in terms of ω‐3 HUFAs is important, particularly for neural tissue, across a diversity of animal taxa ranging from invertebrate zooplankton to vertebrates (including humans). Our review is focused on ω‐3 HUFAs rather than other unsaturated fatty acids because these compounds are especially important biochemically, but scarce in nature. We discuss the dichotomy between ω‐3 HUFA availability between aquatic primary producers, which are often rich in these compounds, and terrestrial primary producers, which are contain little to none of them. We describe the use of fatty acids as qualitative and quantitative tracers for reconstructing animal diets in natural ecosystems. Next, we discuss both direct and indirect ecological implications of ω‐3 HUFA limitation at the individual, population, food web, and ecosystem scales, which include: changes in behavior, species composition, secondary production rates, trophic transfer efficiency and cross‐ecosystem subsidies. We finish by highlighting future research priorities including a need for more research on ω‐3 HUFAs in terrestrial systems, more research their importance for higher order consumers, and more research on the food web and ecosystem‐scale effects of ω‐3 HUFA limitation. Synthesis Mismatches between the supply of and demand for omega‐3 highly unsaturated fatty acids (ω‐3 HUFA) in natural ecosystems have the potential to result in resource limitation across a diverse array of ecosystems. We combined perspectives from ecology and nutritional science to develop a unified synthesis of ω‐3 HUFA ecology. We reviewed the importance of ω‐3 HUFAs for animals, the striking differences in ω‐3 HUFA availability at the base of terrestrial versus aquatic food webs, and the implications of ω‐3 HUFA limitation for food webs. We finished by highlighting research priorities in the field including more research on ω‐3 HUFAs in terrestrial systems, on higher order consumers, and at the food web and ecosystem‐scales.  相似文献   

8.
Stable isotope analysis (SIA) has emerged as a common tool in ecology and has proven especially useful in the study of animal diet, habitat use, movement, and physiology. SIA has been vigorously applied to the study of marine mammals, because most species live in habitats or undergo large migrations/movements that make them difficult to observe. Our review supplies a complete list of published SIA contributions to marine mammal science and highlights informative case examples in four general research areas: (1) physiology and fractionation, (2) foraging ecology and habitat use, (3) ecotoxicology, and (4) historic ecology and paleoecology. We also provide a condensed background of isotopic nomenclature, highlight several physiological considerations important for accurate interpretation of isotopic data, and identify research areas ripe for future growth. Because it is impossible to conduct controlled laboratory experiments on most marine mammal species, future studies in marine mammal ecology must draw on isotopic data collected from other organisms and be cognizant of key assumptions often made in the application of SIA to the study of animal ecology. The review is designed to be accessible to all audiences, from students unfamiliar with SIA to those who have utilized it in published studies.  相似文献   

9.
  1. Invasive species are a key stressor in freshwater ecosystems. When these species are also ecosystem engineers, their impacts are exacerbated because they modulate resource availability for a wide range of other species. The aim of this review is to synthesise existing knowledge of the impacts of invasive ecosystem engineers in freshwaters and identify knowledge gaps requiring further research.
  2. The four questions explored in this review are: (1) What are the trends in research into invasive ecosystem engineers? (2) What are common negative effects of invasive ecosystem engineers in freshwater? (3) Do all impacts of invasive ecosystem engineers have negative consequences for biodiversity? (4) What happens when multiple ecosystem engineers interact? Four literature searches in Web of Science have been used to identify articles for the review and to estimate relative research effort between terrestrial, marine and freshwater ecosystems.
  3. The number of research articles focusing on ecosystem engineers across all ecosystem types is increasing. Despite well-known examples of ecosystem engineer species in freshwaters (e.g. beaver), more research has focussed on terrestrial environments and invasive species.
  4. The effects of invasive ecosystem engineers in freshwater systems are varied and often context dependent. Their effects on biodiversity or native ecosystem engineers are often shown to be negative; however, not all effects associated with these species are deleterious to native species. For instance, some invasive ecosystem engineers support native species through the provision of food or refuges.
  5. Although freshwater ecosystems are often influenced by multiple species of ecosystem engineers (including native, invasive or both), little is known about interactions between these species or the combined effects of multiple ecosystem engineers. More research is also needed that relates the results of laboratory experiments to the field and develops methods for measuring factors that govern the impact of engineers on ecosystems. Understanding the spatial variability of the impacts of invasive ecosystem engineers as well as their interaction with anthropogenic stressors (e.g. hydrologic modification) is also necessary.
  6. The lag in research surrounding invasive ecosystem engineers in freshwater compared to other biomes is concerning, as freshwater ecosystems support biodiversity disproportionate to the area they occupy. Creating predictive models of the impacts of freshwater ecosystem engineers would help anticipate the effects of invasive ecosystem engineers in freshwater and add to the broader understanding of their effects in other biomes.
  相似文献   

10.
The role of animals in modulating nutrient cycling [hereafter, consumer‐driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973–2002 to 7.3 per year during 2003–2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal‐mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non‐CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco‐evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem‐level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems.  相似文献   

11.
GUY WOODWARD 《Freshwater Biology》2009,54(10):2171-2187
1. Dramatic advances have been made recently in the study of biodiversity–ecosystem functioning (B-EF) relations and food web ecology. These fields are now starting to converge, and this fusion has the potential to improve our understanding of how environmental stressors modulate ecosystem processes and the supply of 'goods and services'.
2. Food web structure and dynamics can exert particularly strong influences on B-EF relations in fresh waters, as consumer–resource interactions (e.g. trophic cascades) are often more important than horizontal interactions within trophic levels. For instance, many freshwater food webs are size structured, with large organisms tending to occupy the higher trophic levels and often exerting powerful effects on ecosystem processes. However, because they are also vulnerable to perturbations, non-random losses of these large taxa can alter both food web structure and ecosystem functioning profoundly.
3. Recently, the focus of food web research has shifted away from exploring patterns, towards developing an understanding of processes (e.g. quantifying fluxes of individuals, biomass, energy, nutrients) and how the two interact. Many of the best-characterized food webs are from fresh waters, and these ecosystems are now being used to address some of the shortcomings of earlier B-EF studies. I have identified several key gaps in our current knowledge and highlighted potentially fruitful avenues of future B-EF and food web research.
4. A major challenge for this newly emerging research is to place it within a unified theoretical framework. The application of metabolic theory and ecological stoichiometry may help to achieve this goal by considering biological systems within the constraints imposed upon them by physical and chemical laws.  相似文献   

12.
Despite the importance of small tropical streams for maintaining freshwater biodiversity and providing essential ecosystem services to humans, relatively few studies have investigated multiple-stressor effects of climate and land-use change on these ecosystems, and how these effects may interact. To illustrate these knowledge gaps, we reviewed the current state of knowledge regarding the ecological impacts of climate change and catchment land use on small tropical streams. We consider the effects of predicted changes in streamflow dynamics and water temperatures on water chemistry, habitat structure, aquatic biota, and ecosystem processes. We highlight the pervasive individual effects of climate and land-use change on algal, macroinvertebrate, and fish communities, and in stream metabolism and decomposition processes. We also discuss potential responses of tropical streams in a multiple-stressor scenario, considering higher temperatures and shifts in hydrological dynamics. Finally, we identify six key knowledge gaps in the ecology of low-order tropical streams and indicate future research directions that may improve catchment management in the tropics to help alleviate climate-change impacts and biodiversity losses.  相似文献   

13.
Research in community genetics seeks to understand how the dynamic interplay between ecology and evolution shapes simple and complex communities and ecosystems. A community genetics perspective, however, may not be necessary or informative for all studies and systems. To better understand when and how intraspecific genetic variation and microevolution are important in community and ecosystem ecology, we suggest future research should focus on three areas: (i) determining the relative importance of intraspecific genetic variation compared with other ecological factors in mediating community and ecosystem properties; (ii) understanding the importance of microevolution in shaping ecological dynamics in multi-trophic communities; and (iii) deciphering the phenotypic and associated genetic mechanisms that drive community and ecosystem processes. Here, we identify key areas of research that will increase our understanding of the ecology and evolution of complex communities but that are currently missing in community genetics. We then suggest experiments designed to meet these current gaps.  相似文献   

14.
Predation and scavenging have been classically understood as independent processes, with predator–prey interactions and scavenger–carrion relationships occurring separately. However, the mere recognition that most predators also scavenge at variable rates, which has been traditionally ignored in food‐web and community ecology, leads to a number of emergent interaction routes linking predation and scavenging. The general goal of this review is to draw attention to the main inter‐specific interactions connecting predators (particularly, large mammalian carnivores), their live prey (mainly ungulates), vultures and carrion production in terrestrial assemblages of vertebrates. Overall, we report an intricate network of both direct (competition, facilitation) and indirect (hyperpredation, hypopredation) processes, and provide a conceptual framework for the future development of this promising topic in ecological, evolutionary and biodiversity conservation research. The classic view that scavenging does not affect the population dynamics of consumed organisms is questioned, as multiple indirect top‐down effects emerge when considering carrion and its facultative consumption by predators as fundamental and dynamic components of food webs. Stimulating although challenging research opportunities arise from the study of the interactions among living and detrital or non‐living resource pools in food webs.  相似文献   

15.
Despite our growing understanding of the impacts of invasive plants on ecosystem structure and function, important gaps remain, including whether native and exotic species respond differently to plant invasion. This would elucidate basic ecological interactions and inform management. We performed a meta‐analytic review of the effects of invasive plants on native and exotic resident animals. We found that invasive plants reduced the abundance of native, but not exotic, animals. This varied by animal phyla, with invasive plants reducing the abundance of native annelids and chordates, but not mollusks or arthropods. We found dissimilar impacts among “wet” and “dry” ecosystems, but not among animal trophic levels. Additionally, the impact of invasive plants increased over time, but this did not vary with animal nativity. Our review found that no studies considered resident nativity differences, and most did not identify animals to species. We call for more rigorous studies of invaded community impacts across taxa, and most importantly, explicit consideration of resident biogeographic origin. We provide an important first insight into how native and exotic species respond differently to invasion, the consequences of which may facilitate cascading trophic disruptions further exacerbating global change consequences to ecosystem structure and function.  相似文献   

16.
Understanding the effects of land-cover alterations on ecosystem functioning has become a major challenge in ecological research during the last decade. This has stimulated a rapid growth in research investigating the links between land-cover change and biotic interactions, but to date no study has evaluated the progress towards achieving this scientific goal. With the aim of identifying gaps in current knowledge and challenging research areas for the future, we reviewed the scientific literature published during the last decade (1998–2010) investigating land-cover change effects on trophically-mediated biotic interactions. Our results reveal a disproportionate focus on particular trophic interactions and ecosystem types. Furthermore, in most cases, the measurement of trophic interactions is carried out neglecting the identity of the interacting species and the interrelation between the type of land-cover change effects. Finally, inappropriate temporal scales are applied to cope with spatiotemporal resource fluctuations for the interacting species. We suggest that the ongoing patterns and trends of research hamper efforts to achieve a truly comprehensive understanding of the effects of land-cover alterations on trophic interactions, and hence on ecosystem functioning in human-impacted landscapes. We therefore recommend alternative research trends and indicate gaps in current knowledge that need to be filled. Furthermore, we highlight that these biases could also limit the effectiveness of management actions aimed at ensuring the resilience and long-term conservation of natural habitats worldwide.  相似文献   

17.
Ecosystem restoration implies focusing on multiple trophic levels and ecosystem functioning, yet higher trophic levels, that is, animals, are less frequently targeted by restoration than plants. Habitat diversity, the spatial heterogeneity between and within habitat patches in a landscape, is a well‐known driver of species diversity, and offers possible ways to increase species diversity at multiple trophic levels. We argue that habitat diversity is central in whole‐ecosystem restoration as we review its importance, provide a practical definition for its components, and propose ways to target it in restoration. Restoration targeting habitat diversity is used commonly in aquatic ecosystems, mostly to increase the physical diversity of habitats, meant to provide more niches available to a higher number of animal species. To facilitate the uptake of habitat diversity in terrestrial ecosystem restoration, we distinguish between compositional and structural habitat diversity, because different animal groups will respond to different aspects of habitat diversity. We also propose four methods to increase habitat diversity: varying the starting conditions to obtain divergent successional pathways, emulating natural disturbances, establishing keystone structures, and applying ecosystem engineer species. We provide two case studies to illustrate how these components and methods can be incorporated in restoration. We conclude that targeting habitat diversity is a promising way to restore habitats for a multitude of species of animals and plants, and that it should become mainstream in restoration ecology and practice. We encourage the restoration community to consider compositional and structural habitat diversity and to specifically target habitat diversity in ecosystem restoration.  相似文献   

18.
N:P化学计量学在生态学研究中的应用   总被引:38,自引:0,他引:38  
化学计量学很早就被应用于生态学研究中,但长期以来几乎被生态学家所忽视。近年来,由于认识到化学计量学研究可以把生态实体的各个层次在元素水平上统一起来,因此元素化学计量学成为近年来新兴的一个生态学研究领域。氮磷作为植物生长的必需矿质营养元素和生态系统常见的限制性元素,在植物体内存在功能上的联系,二者之间具有重要的相互作用。近年来由于人类活动的强烈影响,这两种元素的循环在速度和规模上都发生了前所未有的改变,导致一系列环境问题的出现,因此N:P化学计量学研究就显得极为重要。本文论述了N:P化学计量学在物种、群落、生态系统等各层次的应用现状,同时从分子生物学角度分析了应用N:P化学计量学的可行性,并指出了N:P化学计量学研究的应用前景和存在的缺陷。  相似文献   

19.
20.
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号