首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) binds selectively to the outer membrane of rat liver mitochondria but not to inner mitochondrial or microsomal membranes nor to the plasma membrane of human erythrocytes. A protein having subunit molecular weight of 31,000, determined by sodium dodecyl sulfate-gel electrophoresis, has been highly purified from the outer mitochondrial membrane by repetitive solubilization with octyl-beta-D-glucopyranoside followed by reconstitution into membranous vesicles when the detergent is removed by dialysis. When incorporated into lipid vesicles, the protein confers the ability to bind brain hexokinase in a Glc-6-P-sensitive manner as is seen with the intact outer mitochondrial membrane. Hexokinase binding ability and the 31,000 subunit molecular weight protein co-sediment during sucrose density gradient centrifugation. Both hexokinase binding ability and the 31,000 subunit molecular weight protein are resistant to protease treatment of the intact outer mitochondrial membrane while other membrane proteins are extensively degraded. It is concluded that this protein, designated the hexokinase-binding protein (HBP), is an integral membrane protein responsible for the selective binding of hexokinase by the outer mitochondrial membrane.  相似文献   

2.
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4 degrees C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane.  相似文献   

3.
Bax is a Bcl-2 family protein with proapoptotic activity, which has been shown to trigger cytochrome c release from mitochondria both in vitro and in vivo. In control HeLa cells, Bax is present in the cytosol and weakly associated with mitochondria as a monomer with an apparent molecular mass of 20,000 Da. After treatment of the HeLa cells with the apoptosis inducer staurosporine or UV irradiation, Bax associated with mitochondria is present as two large molecular weight oligomers/complexes of 96,000 and 260,000 Da, which are integrated into the mitochondrial membrane. Bcl-2 prevents Bax oligomerization and insertion into the mitochondrial membrane. The outer mitochondrial membrane protein voltage-dependent anion channel and the inner mitochondrial membrane protein adenosine nucleotide translocator do not coelute with the large molecular weight Bax oligomers/complexes on gel filtration. Bax oligomerization appears to be required for its proapoptotic activity, and the Bax oligomer/complex might constitute the structural entirety of the cytochrome c-conducting channel in the outer mitochondrial membrane.  相似文献   

4.
In order for proteins to be imported into subcellular compartments, they must first traverse the organellar membranes. In mitochondria, hydrophilic protein channels in both the outer and inner membranes serve such a purpose. Recently, the channel protein of the outer mitochondrial membrane was identified to be Tom40. Tom40 is found in a high molecular weight complex termed the general import pore (GIP) complex where it is tightly associated with the receptor protein Tom22 along with Tom7, Tom6 and Tom5. Tom7 and Tom6 seem to modulate the dynamics of the GIP complex while Tom5 is involved in preprotein transfer from receptors to Tom40. The receptor proteins Tom70 and Tom20 associate with this complex in a weaker manner where they are involved in the initial recognition of preproteins. This review focuses on the identification and characterisation of the transport machinery of the outer mitochondrial membrane and how they are involved in the co-ordination and regulation of events required for the translocation of preproteins into mitochondria.  相似文献   

5.
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.  相似文献   

6.
Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-XL overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Metmut) and Bcl-XL-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaDTM/C) or Bcl-XL in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-XL overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-XL appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-XL may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-XL overespression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.  相似文献   

7.
Mitochondria are complex organelles with a highly dynamic distribution and internal organization. Here, we demonstrate that mitofilin, a previously identified mitochondrial protein of unknown function, controls mitochondrial cristae morphology. Mitofilin is enriched in the narrow space between the inner boundary and the outer membranes, where it forms a homotypic interaction and assembles into a large multimeric protein complex. Down-regulation of mitofilin in HeLa cells by using specific small interfering RNA lead to decreased cellular proliferation and increased apoptosis, suggesting abnormal mitochondrial function. Although gross mitochondrial fission and fusion seemed normal, ultrastructural studies revealed disorganized mitochondrial inner membrane. Inner membranes failed to form tubular or vesicular cristae and showed as closely packed stacks of membrane sheets that fused intermittently, resulting in a complex maze of membranous network. Electron microscopic tomography estimated a substantial increase in inner:outer membrane ratio, whereas no cristae junctions were detected. In addition, mitochondria subsequently exhibited increased reactive oxygen species production and membrane potential. Although metabolic flux increased due to mitofilin deficiency, mitochondrial oxidative phosphorylation was not increased accordingly. We propose that mitofilin is a critical organizer of the mitochondrial cristae morphology and thus indispensable for normal mitochondrial function.  相似文献   

8.
Summary The outer mitochondrial membranes of all organisms so far examined contain a protein which forms voltage-dependent anion selective channels (VDAC) when incorporated into planar phospholipid membranes. Previous reports have suggested that the yeast (Saccharomyces cerevisiae) outer mitochondrial membrane component responsible for channel formation is a protein of 29,000 daltons which is also the major component of this membrane. In this report, we describe the purification of this 29,000-dalton protein to virtual homogeneity from yeast outer mitochondrial membranes. The purified protein readily incorporates into planar phospholipid membranes to produce ionic channels. Electrophysiological characterization of these channels has demonstrated they have a size, selectivity and voltage dependence similar to VDAC from other organisms. Biochemically, the purified protein has been characterized by determining its amino acid composition and isoelectric point (pI). In addition, we have shown that the purified protein, when reconstituted into liposomes, can bind hexokinase in a glucose-6-phosphate dependent manner, as has been shown for VDAC purified from other sources. Since physiological characterization suggests that the functional parameters of this protein have been conserved, antibodies specific to yeast VDAC have been used to assess antigenic conservation among mitochondrial proteins from a wide number of species. These experiments have shown that yeast VDAC antibodies will recognize single mitochondrial proteins fromDrosophila, Dictyostelium andNeurospora of the appropriate molecular weight to be VDAC from these organisms. No reaction was seen to any mitochondrial protein from rat liver, rainbow trout,Paramecium, or mung bean. In addition, yeast VDAC antibodies will recognize a 50-kDa mol wt protein present in tobacco chloroplasts. These results suggest that there is some antigenic as well as functional conservation among different VDACs.  相似文献   

9.
ABCB6, a member of the adenosine triphosphate-binding cassette (ABC) transporter family, has been proposed to be responsible for the mitochondrial uptake of porphyrins. Here we show that ABCB6 is a glycoprotein present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation. Consistent with its presence in exosomes, endogenous ABCB6 is localized to the endo/lysosomal compartment, and is absent from the mitochondria of cells. Knock-down studies demonstrate that ABCB6 function is not required for de novo heme biosynthesis in differentiating K562 cells, excluding this ABC transporter as a key regulator of porphyrin synthesis. We confirm the mitochondrial localization of ABCB7, ABCB8 and ABCB10, suggesting that only three ABC transporters should be classified as mitochondrial proteins. Taken together, our results challenge the current paradigm linking the expression and function of ABCB6 to mitochondria.  相似文献   

10.
11.
M Ohba  G Schatz 《The EMBO journal》1987,6(7):2109-2115
Import of several precursor proteins into isolated yeast mitochondria is inhibited by rabbit antiserum raised against the total mitochondrial outer membrane or against electrophoretically purified 45-kd outer membrane proteins. Antisera against other outer membrane proteins are only marginally active or inactive. Inhibition by the antiserum against 45-kd proteins is only weak with untreated mitochondria, but reaches 80-90% with mitochondria that had been pretreated with 0.1 mg/ml trypsin. This trypsin pretreatment by itself inhibits precursor import only slightly (30-50%). Selective inhibition of import does not correlate with binding of the various IgGs to the mitochondrial surface and is also observed with the corresponding Fab fragments. Inhibition by antibodies against 45-kd outer membrane proteins strongly suggests the existence of a mitochondrial surface protein mediating protein import and offers a means of isolating this protein.  相似文献   

12.
We cloned a 38-kDa rat mitochondrial outer membrane protein (OM38) with structural homology to the central component of preprotein translocase of the fungal mitochondrial outer membrane, Tom40. Although it has no predictable alpha-helical transmembrane segments, OM38 is resistant to alkaline carbonate extraction and is inaccessible to proteases and polyclonal antibodies added from outside the mitochondria, suggesting that it is embedded in the membrane, probably in a beta-barrel structure, as has been similarly speculated for fungal Tom40. Immunoprecipitation demonstrated that OM38 is associated with the major import receptors rTOM20 and rTOM22, and several other unidentified components with molecular masses of 5-10 kDa in digitonin-solubilized membrane: OM10, OM7.5, and OM5. Blue native polyacrylamide gel electrophoresis revealed that OM38 is a component of a approximately 400-kDa complex, firmly associating with rTOM22 and loosely associating with rTOM20. The preprotein in transit to the matrix interacted with the TOM complex containing OM38, and immunodepletion of OM38 resulted in the loss of preprotein import activity of the detergent-solubilized and reconstituted outer membrane vesicles. Taken together, these results indicate that OM38 is a structural and functional homolog of fungal Tom40 and functions as a component of the preprotein import machinery of the rat mitochondrial outer membrane.  相似文献   

13.
Little is known about the mechanism of mitochondrial division. We show here that mitochondria are disrupted by mutations in a C. elegans dynamin-related protein (DRP-1). Mutant DRP-1 causes the mitochondrial matrix to retract into large blebs that are both surrounded and connected by tubules of outer membrane. This indicates that scission of the mitochondrial outer membrane is inhibited, while scission of the inner membrane still occurs. Overexpressed wild-type DRP-1 causes mitochondria to become excessively fragmented, consistent with an active role in mitochondrial scission. DRP-1 fused to GFP is observed in spots on mitochondria where scission eventually occurs. These data indicate that wild-type DRP-1 contributes to the final stages of mitochondrial division by controlling scission of the mitochondrial outer membrane.  相似文献   

14.
Human ATP-binding cassette transporter isoform B6 (ABCB6) has been proposed to be situated in both the inner and outer membranes of mitochondria. These inconsistent observations of submitochondrial localization have led to conflicting interpretation in view of directions of transport facilitated by ABCB6. We show here that ABCB6 has an N-terminal hydrophobic region of 220 residues that functions as a primary determinant of co-translational targeting to the endoplasmic reticulum (ER), but it does not have any known features of a mitochondrial targeting sequence. We defined the potential role of this hydrophobic extension of ABCB6 by glycosylation site mapping experiments, and demonstrated that the first hydrophobic segment acts as a type I signal-anchor sequence, which mediates N-terminal translocation through the ER membrane. Laser scanning microscopic observation revealed that ABCB6 did not co-localize with mitochondrial staining. Rather, it localized in the ER-derived and brefeldin A-sensitive perinuclear compartments, mainly in the Golgi apparatus.  相似文献   

15.
Chemical cross-linking procedures have been employed to study possible interactions between components of the mitochondrial outer membrane and NH2-terminal signal sequences located in proteins destined for import into the organelle. A synthetic peptide comprising amino acids 1-27 of pre-ornithine carbamyltransferase (pOCT) was found to interact specifically with a mitochondrial polypeptide of apparent molecular size 30 kDa. Membrane fractionation and protease accessibility analyses indicated that the polypeptide, designated p30, is located in the outer membrane. Binding of the synthetic peptide to p30 was saturable and reversible; Scatchard analysis of the binding data revealed a dissociation constant of 2 X 10(-6) M and predicts that p30 constitutes 4-10% of the outer mitochondrial membrane protein. Mild trypsin digestion of the mitochondrial surface destroyed both the ability of p30 to cross-link to the signal peptide and the ability of the organelle to import pOCT. Neither parameter was affected, however, by pretreatment of mitochondria with 1 M KCl.  相似文献   

16.
Tob55 is the major component of the TOB complex, which is found in the outer membrane of mitochondria. A sheltered knockout of the tob55 gene was developed in Neurospora crassa. When grown under conditions that reduce the levels of the Tob55 protein, the strain exhibited a reduced growth rate and mitochondria isolated from these cells were deficient in their ability to import beta-barrel proteins. Surprisingly, Western blots of wild-type mitochondrial proteins revealed two bands for Tob55 that differed by approximately 4 kDa in their apparent molecular masses. Sequence analysis of cDNAs revealed that the tob55 mRNA is alternatively spliced and encodes three isoforms of the protein, which are predicted to contain 521, 516, or 483 amino acid residues. Mass spectrometry of proteins isolated from purified outer membrane vesicles confirmed the existence of each isoform in mitochondria. Strains that expressed each isoform of the protein individually were constructed. When cells expressing only the longest form of the protein were grown at elevated temperature, their growth rate was reduced and mitochondria isolated from these cells were deficient in their ability to assembly beta-barrel proteins.  相似文献   

17.
Procaspase-9 is the zymogen form of one of the apoptosis initiators, caspase-9. Its cellular location may differ depending on the cell type; it is found throughout the cytosol, although some of it may be associated with the mitochondria. Procaspase-9 relocates from the cytosol to the mitochondria shortly after the triggering of apoptosis in rat hepatocytes. We investigated whether the mitochondrial protein import machineries import procaspase-9. The combined results of protein import analyses, mitochondrial fractionation and protease treatments of intact and swollen mitochondria imply that procaspase-9 attaches to the outer surface of the mitochondrial outer membrane.  相似文献   

18.
The major protein of the outer mitochondrial membrane of Neurospora was purified. On dodecylsulfate-containing gels it displayed a single band with an apparent molecular weight of 31 000. Reconstitution experiments with artificial lipid bilayers showed that this protein forms pores. Pore conductance was dependent on the voltage across the membrane. The protein inserted into the membrane in an oriented fashion, the membrane current being dependent on the sign of the voltage. Single pore conductance was 5nS, suggesting a diameter of 2 nm of the open pore. This mitochondrial protein shows a number of similarities to the outer membrane porins of gram-negative bacteria.  相似文献   

19.
Mitochondrial outer membrane vesicles (OMV) from the yeast Saccharomyces cerevisiae were prepared by osmotic swelling and mechanical disruption of mitochondria that had been isolated at pH 6.0 and purified by density gradient centrifugation. The OMV were obtained in a yield of 1% (protein/protein) with respect to the mitochondria. The OMV were shown to be essentially free of mitochondrial inner membrane protein markers, while contamination with endoplasmic reticulum was around 5% (protein-based). The very low phosphatidylserine synthase activity present in the OMV preparation indicated that contamination with mitochondria-associated membranes (MAM) was negligible. The resistance of the outer membrane protein Tom40 to digestion by trypsin demonstrated the sealed nature and right-side out orientation of the OMV. Analysis of the phospholipid composition revealed that the contents of phosphatidylcholine and phosphatidylinositol are higher and the content of phosphatidylethanolamine is lower in the mitochondrial outer membrane as compared to whole mitochondria. Cardiolipin is largely depleted in the OMV.  相似文献   

20.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号