首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
MicroRNAs (miRs) function as tumor suppressors or oncogenes in multiple tumor types. Although miR expression is tightly regulated, the molecular basis of miR regulation is poorly understood. Here, we investigated the influence of the histone demethylase Jumonji/ARID1 B (JARID1B) on miR regulation in breast tumor cells. In MCF-7 cells with stable RNAi-mediated suppression of JARID1B expression we identified altered regulation of multiple miRs including let-7e, a member of the let-7 family of tumor suppressor miRs. Chromatin immunoprecipitation analysis demonstrated JARID1B binding to the let-7e promoter region as well as removal of the of H3K4me3 histone mark associated with active gene expression. These results suggest that JARID1B epigenetically represses let-7e expression. JARID1B stimulates tumor cell proliferation by promoting the G(1) to S transition. As predicted, suppression of JARID1B resulted in an accumulation of MCF-7 cells in G(1). We confirmed that cyclin D1, which also promotes G(1) progression, is a direct target of let-7e, and we show that cyclin D1 expression is suppressed in JARID1B knockdown cells. Cyclin D1 expression and cell cycle progression were restored following inhibition of let-7e, suggesting that JARID1B repression of let-7e contributes to cyclin D1 expression and JARID1B-mediated cell cycle progression. Our results indicate that the JARID1B demethylase contributes to tumor cell proliferation through the epigenetic repression of a tumor suppressor miR.  相似文献   

4.
JARID1B (also known as KDM5B or PLU1) is a member of the JARID1 family of histone lysine demethylases responsible for the demethylation of trimethylated lysine 27 in histone H3 (H3K4me3), a mark for actively transcribed genes. JARID1B is overexpressed in several cancers, including breast cancer, prostate cancer, and lung cancer. In addition, JARID1B is required for mammary tumor formation in syngeneic or xenograft mouse models. JARID1B-expressing melanoma cells are associated with increased self-renewal character. Therefore, JARID1B represents an attractive target for cancer therapy. Here we characterized JARID1B using a homogeneous luminescence-based demethylase assay. We then conducted a high throughput screen of over 15,000 small molecules to identify inhibitors of JARID1B. From this screen, we identified several known JmjC histone demethylase inhibitors, including 2,4-pyridinedicarboxylic acid and catechols. More importantly, we identified several novel inhibitors, including 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT), which inhibits JARID1B with an IC50 of about 3 μm in vitro. Consistent with this, PBIT treatment inhibited removal of H3K4me3 by JARID1B in cells. Furthermore, this compound inhibited proliferation of cells expressing higher levels of JARID1B. These results suggest that this novel small molecule inhibitor is a lead compound that can be further optimized for cancer therapy.  相似文献   

5.
Recent emerging evidences revealed that epigenetic methylation of histone and DNA regulates the lineage commitment of mesenchymal progenitor cells. This study was undertaken to delineate the actions of histone lysine demethylase 7A (KDM7A) on osteogenic and adipogenic differentiation. Kdm7a expression was up‐regulated in primary marrow stromal cells and established stromal ST2 line after adipogenic and osteogenic treatment. Silencing of endogenous Kdm7a in the cells blocked adipogenic differentiation whereas promoted osteogenic differentiation. Conversely, overexpression of wild‐type Kdm7a in the progenitor cells enhanced adipogenic differentiation whereas inhibited osteogenic differentiation. However, the effect of KDM7A on cell differentiation was largely attenuated when the point mutation was made that abolishes enzymatic activity of KDM7A. Mechanism investigations revealed that silencing of Kdm7a down‐regulated the expression of the CCAAT/enhancer binding protein α (C/EBPα) and secreted frizzled‐related protein 1 (Sfrp1). Chromatin immunoprecipitation (ChIP) assay revealed that KDM7A directly binds to the promoters of C/EBPα and Sfrp1 and removes the histone methylation marks H3K9me2 and H3K27me2. Furthermore, silencing of Kdm7a activated canonical Wnt signalling. Thereafter, activation of canonical Wnt signalling through silencing of Sfrp1 in ST2 attenuated the stimulation of adipogenic differentiation and inhibition of osteogenic differentiation by KDM7A. Our study suggests that KDM7A balances adipogenic and osteogenic differentiation from progenitor cells through epigenetic control of C/EBPα and canonical Wnt signalling and implicates that control of KDM7A action has an epigenetic perspective of curtailing metabolic disorders like osteoporosis.  相似文献   

6.
7.
8.
Histone H3K4 demethylases are essential in development and differentiation.   总被引:1,自引:0,他引:1  
Lysine histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. The methylation of Lys4 of histone H3 seems to be of particular significance. It is associated with active regions of the genome, and in Drosophila it is catalyzed by trithorax-group proteins that have become paradigms of developmental regulators at the level of chromatin. Like other histone methylation events, H3K4 methylation was considered irreversible until the identification of a large number of histone demethylases indicated that demethylation events play an important role in histone modification dynamics. However, the described demethylases had no strictly assigned biological functions and the identity of the histone demethylases that would contribute to the epigenetic changes specifying certain biological processes was unknown. Recently, several groups presented evidence that a family of 4 JmjC domain proteins results in the global changes of histone demethylation, and in elegant studies using model organisms, they demonstrated the importance of this family of histone demethylases in cell fate determination. All 4 proteins possess the demethylase activity specific to H3K4 and belong to the poorly described JARID1 protein family.  相似文献   

9.
10.
11.
12.
Histone deacetylases (HDACs) deacetylate lysine residues of histone and non-histone proteins and thereby regulate the cell-cycle, gene expression, and several other processes. We have analyzed the effects of HDAC1 on Runx2-mediated regulation of osteopontin (OPN) promoter activation and gene expression in mesenchymal progenitor C3h10t1/2 cells and show that co-expression of HDAC1 along with Runx2 results in down-regulation of Runx2-induced OPN mRNA expression during both the proliferation and differentiation stages of C3h10t1/2 cells. Luciferase assay results revealed that HDAC1 efficiently down-regulated Runx2-stimulated OPN promoter activity in a dose-dependent manner whereas TSA relieved the HDAC1-mediated repression and up-regulated the Runx2-induced OPN promoter activity and mRNA expression. In vivo HDAC1 co-localized and physically interacted with Runx2 and associated with the OPN promoter. Thus, HDAC1 not only plays a critical role in regulation of Runx2-stimulated expression of osteogenic genes, like OPN, but also regulate the proliferation and differentiation stages of mesenchymal progenitor cells, such as C3h10t1/2.  相似文献   

13.
14.
15.
16.
Herpes simplex virus 1 (HSV-1) genomes are associated with the repressive heterochromatic marks H3K9me2/me3 and H3K27me3 during latency. Previous studies have demonstrated that inhibitors of H3K9me2/me3 histone demethylases reduce the ability of HSV-1 to reactivate from latency. Here we demonstrate that GSK-J4, a specific inhibitor of the H3K27me3 histone demethylases UTX and JMJD3, inhibits HSV-1 reactivation from sensory neurons in vitro. These results indicate that removal of the H3K27me3 mark plays a key role in HSV-1 reactivation.  相似文献   

17.
18.
Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER-) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.  相似文献   

19.
20.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号