首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The incorporation of ribonucleotides in DNA has attracted considerable notice in recent years, since the pool of ribonucleotides can exceed that of the deoxyribonucleotides by at least 10–20-fold, and single ribonucleotide incorporation by DNA polymerases appears to be a common event. Moreover ribonucleotides are potentially mutagenic and lead to genome instability. As a consequence, errantly incorporated ribonucleotides are rapidly repaired in a process dependent upon RNase H enzymes. On the other hand, global genomic nucleotide excision repair (NER) in prokaryotes and eukaryotes removes damage caused by covalent modifications that typically distort and destabilize DNA through the production of lesions derived from bulky chemical carcinogens, such as polycyclic aromatic hydrocarbon metabolites, or via crosslinking. However, a recent study challenges this lesion-recognition paradigm. The work of Vaisman et al. (2013) [34] reveals that even a single ribonucleotide embedded in a deoxyribonucleotide duplex is recognized by the bacterial NER machinery in vitro. In their report, the authors show that spontaneous mutagenesis promoted by a steric-gate pol V mutant increases in uvrA, uvrB, or uvrC strains lacking rnhB (encoding RNase HII) and to a greater extent in an NER-deficient strain lacking both RNase HI and RNase HII. Using purified UvrA, UvrB, and UvrC proteins in in vitro assays they show that despite causing little distortion, a single ribonucleotide embedded in a DNA duplex is recognized and doubly-incised by the NER complex. We present the hypothesis to explain the recognition and/or verification of this small lesion, that the critical 2′-OH of the ribonucleotide – with its unique electrostatic and hydrogen bonding properties – may act as a signal through interactions with amino acid residues of the prokaryotic NER complex that are not possible with DNA. Such a mechanism might also be relevant if it were demonstrated that the eukaryotic NER machinery likewise incises an embedded ribonucleotide in DNA.  相似文献   

2.
There are many barriers that replication forks must overcome in order to duplicate a genome in vivo. These barriers include damage to the template DNA and proteins bound to this template. If replication is halted by such a block, then the block must be either removed or bypassed for replication to continue. If continuation of replication employs the original fork, avoiding the need to reload the replication apparatus, then the blocked replisome must retain functionality. In vivo studies of Escherichia coli replication forks suggest that replication forks blocked by protein-DNA complexes retain the ability to resume replication upon removal of the block for several hours. Here we tested the functional stability of replication forks reconstituted in vitro and blocked by lac repressor-operator complexes. Once a fork comes to a halt at such a block, it cannot continue subsequently to translocate through the block until addition of IPTG induces repressor dissociation. However, the ability to resume replication is retained only for 4-6 min regardless of the topological state of the template DNA. Comparison of our in vitro data with previous in vivo data suggests that either accessory factors that stabilise blocked forks are present in vivo or the apparent stability of blocked forks in vivo is due to continual reloading of the replication apparatus at the site of the block.  相似文献   

3.
DNA double-strand break (DSB) repair occurring in repeated DNA sequences often leads to the generation of chromosomal rearrangements. Homologous recombination normally ensures a faithful repair of DSBs through a mechanism that transfers the genetic information of an intact donor template to the broken molecule. When only one DSB end shares homology to the donor template, conventional gene conversion fails to occur and repair can be channeled to a recombination-dependent replication pathway termed break-induced replication (BIR), which is prone to produce chromosome non-reciprocal translocations (NRTs), a classical feature of numerous human cancers. Using a newly designed substrate for the analysis of DSB–induced chromosomal translocations, we show that Mus81 and Yen1 structure-selective endonucleases (SSEs) promote BIR, thus causing NRTs. We propose that Mus81 and Yen1 are recruited at the strand invasion intermediate to allow the establishment of a replication fork, which is required to complete BIR. Replication template switching during BIR, a feature of this pathway, engenders complex chromosomal rearrangements when using repeated DNA sequences dispersed over the genome. We demonstrate here that Mus81 and Yen1, together with Slx4, also promote template switching during BIR. Altogether, our study provides evidence for a role of SSEs at multiple steps during BIR, thus participating in the destabilization of the genome by generating complex chromosomal rearrangements.  相似文献   

4.
Cheng E  Vaisica JA  Ou J  Baryshnikova A  Lu Y  Roth FP  Brown GW 《Genetics》2012,192(1):147-160
Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.  相似文献   

5.
Consistent with the fact that ribonucleotides (rNTPs) are in excess over deoxyribonucleotides (dNTPs) in vivo, recent findings indicate that replicative DNA polymerases (DNA Pols) are able to insert ribonucleotides (rNMPs) during DNA synthesis, raising crucial questions about the fidelity of DNA replication in both Bacteria and Eukarya. Here, we report that the level of rNTPs is 20-fold higher than that of dNTPs in Pyrococcus abyssi cells. Using dNTP and rNTP concentrations present in vivo, we recorded rNMP incorporation in a template-specific manner during in vitro synthesis, with the family-D DNA Pol (PolD) having the highest propensity compared with the family-B DNA Pol and the p41/p46 complex. We also showed that ribonucleotides accumulate at a relatively high frequency in the genome of wild-type Thermococcales cells, and this frequency significantly increases upon deletion of RNase HII, the major enzyme responsible for the removal of RNA from DNA. Because ribonucleotides remain in genomic DNA, we then analyzed the effects on polymerization activities by the three DNA Pols. Depending on the identity of the base and the sequence context, all three DNA Pols bypass rNMP-containing DNA templates with variable efficiency and nucleotide (mis)incorporation ability. Unexpectedly, we found that PolD correctly base-paired a single ribonucleotide opposite rNMP-containing DNA templates. An evolutionary scenario is discussed concerning rNMP incorporation into DNA and genome stability.  相似文献   

6.
Chromosome rearrangements can result in the rapid evolution of hybrid incompatibilities. Robertsonian fusions, particularly those with monobrachial homology, can drive reproductive isolation amongst recently diverged taxa. The recent radiation of rock-wallabies (genus Petrogale) is an important model to explore the role of Robertsonian fusions in speciation. Here, we pursue that goal using an extensive sampling of populations and genomes of Petrogale from north-eastern Australia. In contrast to previous assessments using mitochondrial DNA or nuclear microsatellite loci, genomic data are able to separate the most closely related species and to resolve their divergence histories. Both phylogenetic and population genetic analyses indicate introgression between two species that differ by a single Robertsonian fusion. Based on the available data, there is also evidence for introgression between two species which share complex chromosomal rearrangements. However, the remaining results show no consistent signature of introgression amongst species pairs and where evident, indicate generally low introgression overall. X-linked loci have elevated divergence compared with autosomal loci indicating a potential role for genic evolution to produce reproductive isolation in concert with chromosome change. Our results highlight the value of genome scale data in evaluating the role of Robertsonian fusions and structural variation in divergence, speciation, and patterns of molecular evolution.  相似文献   

7.
Genomes contain tandem repeats that are at risk of internal rearrangements and a threat to genome integrity. Here, we investigated the behavior of the human subtelomeric minisatellites HRAS1, CEB1, and CEB25 in Saccharomyces cerevisiae. In mitotically growing wild-type cells, these GC–rich tandem arrays stimulate the rate of gross chromosomal rearrangements (GCR) by 20, 1,620, and 276,000-fold, respectively. In the absence of the Pif1 helicase, known to inhibit GCR by telomere addition and to unwind G-quadruplexes, the GCR rate is further increased in the presence of CEB1, by 385-fold compared to the pif1Δ control strain. The behavior of CEB1 is strongly dependent on its capacity to form G-quadruplexes, since the treatment of WT cells with the Phen-DC3 G-quadruplex ligand has a 52-fold stimulating effect while the mutation of the G-quadruplex-forming motif reduced the GCR rate 30-fold in WT and 100-fold in pif1Δ cells. The GCR events are telomere additions within CEB1. Differently, the extreme stimulation of CEB25 GCR depends on its affinity for Cdc13, which binds the TG-rich ssDNA telomere overhang. This property confers a biased orientation-dependent behavior to CEB25, while CEB1 and HRAS1 increase GCR similarly in either orientation. Furthermore, we analyzed the minisatellites‚ distribution in the human genome and discuss their potential role to trigger subtelomeric rearrangements.  相似文献   

8.
The stability of genomes is highly variable, both in terms of gene content and gene order. Here I calibrate the loss of gene order conservation (GOC) through time by fitting a simple probabilistic model on pairwise comparisons involving 126 bacterial genomes. The model computes the probability of separation of pairs of contiguous genes per unit of time and fits the data better than previous ones while allowing a mechanistic interpretation for the loss of GOC with time. Although the information on operons is not used in the model, I observe, as expected, that most highly conserved pairs of genes are indeed within operons. However, even the other pairs are much more conserved than expected given the observed experimental rearrangement rates. After 500 Myr, about 50% of the originally contiguous orthologues remain so in the average genome. Hence, the large majority of rearrangements must be deleterious and random genome rearrangements are unlikely to provide for positively selected structural changes. I then use the deviations from the model to define an intrinsic measure of genome stability that allowed the comparison of distantly related genomes and the inference of ancestral states. This shows that clades differ in genome stability, with cyanobacteria being the least stable and gamma-proteobacteria the most stable. Without correction for phylogeny, free-living bacteria are the least stable group of genomes, followed by pathogens, and then endomutualists. However, after correction for phylogenetic inertia (or the removal of cyanobacteria from the analysis), there is no significant association between genome stability and lifestyle or genome size. Hence, although this method has allowed uncovering some of mechanisms leading to rearrangements, we still ignore the forces that differentially shape selection upon genome stability in different species.  相似文献   

9.
《Cell》2022,185(16):3025-3040.e6
  1. Download : Download high-res image (446KB)
  2. Download : Download full-size image
  相似文献   

10.
Summary To establish testosterone-dependent growth in organ-culture, anlagen of preputial glands from normal wild-type and from androgeninsensitive mouse embryos carrying the testicular feminization mutation (Tfm) were explanted and cultured in the presence of testosterone. Within six days a size difference developed between Tfm and wild-type explants involving length of hair follicle, amount of preputial gland tissue, and overall size.Anlagen from Tfm and wild-type preputial glands were then separated into epithelial bud and mesenchyme. Reciprocal recombinants were prepared and cultured with testosterone. In the recombinants development of hair follicles and gland tissue was inconsistent. Nevertheless, the effect of testosterone was expressed in the overall size of the explants. The size correlated with the type of mesenchyme used, but not with the type of epithelium: Androgen-insensitive Tfm epithelium combined with wild-type mesenchyme reached the same size as whole wild-type glands and wild-type/wild-type recombinants. Wild-type epithelium with Tfm mesenchyme resulted in small explants, which were in the range of the whole androgen-insensitive Tfm glands. Tfm/Tfm recombinants showed very poor growth, probably related to the fact that in this group no hair or gland structures developed.  相似文献   

11.
L. Miesel  A. Segall    J. R. Roth 《Genetics》1994,137(4):919-932
Homologous sequences placed in inverse order at particular separated sites in the bacterial chromosome (termed ``permissive') can recombine to form an inversion of the intervening chromosome segment. When the same repeated sequences flank other chromosome segments (``non-permissive'), recombination occurs but the expected inversion rearrangement is not found among the products. The failure to recover inversions of non-permissive chromosomal segments could be due to lethal effects of the final rearrangement. Alternatively, local chromosomal features might pose barriers to reciprocal exchanges between sequences at particular sites and could thereby prevent formation of inversions of the region between such sites. To distinguish between these two possibilities, we have constructed inversions of two non-permissive intervals by means of phage P22-mediated transduction crosses. These crosses generate inversions by simultaneous incorporation of two transduced fragments, each with a sequence that forms one join-point of the final inversion. We constructed inversions of the non-permissive intervals trp ('34) to his ('42) and his ('42) to cysA ('50). Strains with the constructed inversions are viable and grow normally. These results show that our previous failure to detect formation of these inversions by recombination between chromosomal sequences was not due to lethal effects of the final rearrangement. We infer that the ``non-permissive' character of some chromosomal segments reflects the inability of the recombination system to perform the needed exchanges between inverse order sequences at particular sites. Apparently these mechanistic problems were circumvented by the transductional method used here to direct inversion formation.  相似文献   

12.
ABSTRACT In ciliates, development of the polyploid somatic macronucleus after sexual events involves extensive and reproducible rearrangements of the germ-line genome, including chromosome fragmentation and precise excision of numerous internal sequence elements. In Paramecium aurelia, alternative macronuclear versions of the same germ-line genome can be maternally inherited across sexual generations, showing that rearrangement patterns are not strictly determined by the germ-line sequence. Homology-dependent maternal effects can be evidenced by transformation of the vegetative macronucleus with cloned macronuclear sequences: new fragmentation patterns or internal deletions are specifically induced during differentiation of a new macronucleus, in sexual progeny of transformed clones. Furthermore, transformation of the maternal macronucleus with germ-line sequences containing internal eliminated sequences (short single-copy elements) can result in a specific inhibition of the excision of the same elements in the zygotic macronucleus. These experiments show that the processing of many germ-line sequences in the developing macronucleus is sensitive to the structure and copy number of homologous sequences in the maternal macronucleus. The generality and sequence specificity of this trans-nuclear, epigenetic regulation of rearrangements suggest that it is mediated by pairing interactions between germ-line sequences and sequences imported from the maternal macronucleus.  相似文献   

13.
《Cell》2021,184(16):4251-4267.e20
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

14.
The premature human aging Werner syndrome (WS) is caused by mutation of the RecQ-family WRN helicase, which is unique in possessing also 3'-5' exonuclease activity. WS patients show significant genomic instability with elevated cancer incidence. WRN is implicated in restraining illegitimate recombination, especially during DNA replication. Here we identify a Drosophila ortholog of the WRN exonuclease encoded by the CG7670 locus. The predicted DmWRNexo protein shows conservation of structural motifs and key catalytic residues with human WRN exonuclease, but entirely lacks a helicase domain. Insertion of a piggyBac element into the 5' UTR of CG7670 severely reduces gene expression. DmWRNexo mutant flies homozygous for this insertional allele of CG7670 are thus severely hypomorphic; although adults show no gross morphological abnormalities, females are sterile. Like human WS cells, we show that the DmWRNexo mutant flies are hypersensitive to the topoisomerase I inhibitor camptothecin. Furthermore, these mutant flies show highly elevated rates of mitotic DNA recombination resulting from excessive reciprocal exchange. This study identifies a novel WRN ortholog in flies and demonstrates an important role for WRN exonuclease in maintaining genome stability.  相似文献   

15.
Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster: bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. These observations have led to the suggestion that, through the process of somatic chromosome pairing, such loci are brought into sufficient proximity to permit effective passage of molecular information between homologues; rearrangement heterozygosity would then displace the homologues relative to one another such that this trans-communication is obviated. The genetic properties of the proximity-dependent allelic complementation (termed transvection effects) at the BX-C and DPP-C, are quite similar. Chromosomal rearrangements which disrupt transvection possess a breakpoint in a particular segment of the chromosome arm bearing the transvection-sensitive gene (arm 2L for the DDP-C and 3R for the BX-C); this segment of each arm has been termed the critical region by Lewis (1954). As determined by cytogenetic analysis of transvection-disrupting rearrangements, the critical regions for the BX-C and DDP-C transvection effects extend proximally from these loci for several hundred polytene chromosome bands (Lewis 1954; Gelbart 1982). The interaction between the zeste and white loci appears to depend upon the proximity of the two w+ alleles. By use of insertional duplications, displacement of w+ homologues has been shown to interfere with the zeste-white interaction. In contrast to transvection at bithorax and decapentaplegic, however, only breakpoints in the immediate vicinity of the white locus can disrupt the zeste-white interaction (Gans 1953; Green 1967; Gelbart 1971; this report). In this report, we investigate the basis for the difference in the size of the BX-C and DPP-C critical regions from that of white. We test and eliminate the possibility that the difference is due to the presence near the white locus of a site which mediates somatic chromosome pairing. Rather, our evidence strongly suggests that the zeste-white interaction is, at the phenotypic level, much less sensitive to displacement of the homologous genes than is transvection at either the BX-C or DPP-C. We also show that many of the breakpoints in the vicinity of the white locus do not behave as if they are disrupting a critical region for somatic chromosome pairing. Given these results, we suggest that the zeste-white interaction and transvection are two different proximity-dependent phenomena.  相似文献   

16.
应用PRINS技术定位黄鳝Hox基因的研究   总被引:3,自引:0,他引:3  
Hox基因是近年来发现的支持基因组复制进化理论的最有力的证据。该研究应用引物原位延伸 (PRINS)技术 ,在黄鳝有丝分裂染色体标本上开展Hox基因的定位研究。研究结果表明 ,在黄鳝染色体组中可能存在有 6个Hox基因簇 ,这些基因簇分别位于黄鳝第 1、2、3、6、8和 10号染色体 ,相对着丝粒距离分别为 2 8 2 4± 2 88、4 5 5±1 39、13 89± 2 0 3、74 32± 1.86、38 0 3± 2 .4 1和 5 8 18± 2 0 5。该研究定位黄鳝Hox基因将有助于挖掘黄鳝染色体的来源和进化特征 ,并为基因组复制进化理论提供黄鳝这一特化物种的细胞遗传学证据。  相似文献   

17.
Chromosome rearrangements are common, but their dynamics over time, mechanisms of occurrence and the genomic features that shape their distribution and rate are still poorly understood. We used allohaploid Brassica napus (AC, n = 19) as a model to analyze the effect of genomic features on the formation and diversity of meiotically driven chromosome rearrangements. We showed that allohaploid B. napus meiosis leads to extensive new structural diversity. Almost every allohaploid offspring carried a unique combination of multiple rearrangements throughout the genome, and was thus structurally differentiated from both its haploid parent and its sister plants. This large amount of genome reshuffling was remarkably well‐tolerated in the heterozygous state, as neither male nor female fertility were strongly reduced, and meiosis behavior was normal in most cases. We also used a quantitative statistical model, which accounted for 75% of the observed variation in rearrangement rates, to show that the distribution of meiotically driven chromosome rearrangements was not random but was shaped by three principal genomic features. In descending order of importance, the rate of marker loss increased strongly with genetic distance from the centromere, the degree of collinearity between chromosomes, and the genome of origin (A < C). Overall, our results demonstrate that B. napus accumulates a large number of genetic changes, but these rearrangements are not randomly distributed in the genome. The structural genetic diversity produced by the allohaploid pathway and its role in the evolution of polyploid species compared to diploid meiosis are discussed.  相似文献   

18.
Chromosomal editing constitutes the direct and specific modification of the genetic information present in the chromosome. In the bacterium Escherichia coli, strategies were originally developed for the production of specific proteins, the genotypic improvement of strains, and the analysis of regulation of gene expression. However, with the emerging field of metabolic engineering and genomics, efficient means of targeting specific genetic mutations into the chromosome are most useful. In this review, a summary of the systems currently available to generate insertions and deletions in the chromosome of E. coli are presented, as well as the current knowledge about the genetic mechanisms responsible for these processes.  相似文献   

19.
该文论述了基因组改组技术的产生和原理、方法和特点,以及该技术的应用、意义及其发展前景.基因组改组技术是首先对微生物菌株进行诱变,筛选出正向突变的菌株,然后通过原生质体"递推式融合"使这些正向突变的若干个菌株进行基因组重组,从中筛选出符合育种要求的重组子,从而在短时间内获得性状得到大幅度提高的菌株.  相似文献   

20.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号