首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Nm23-H1/nucleoside diphosphate (NDP) kinase A is a metastasis suppressor, besides its enzymatic activity. The mutant S120G has been found in high-grade neuroblastomas. The mutant protein, once denatured in urea, is unable to refold in vitro. A size-exclusion chromatography analysis of the folding/association pathway showed that recombinant wild-type and S120G mutant human Nm23-H1/NDP kinase A unfold and refold passing through a molten globule state while typical hexameric NDP kinases unfold without dissociated species and refold through a native monomeric intermediate. A survey of the recent literature showed that several proteins involved in cancer, and their mutants, are marginally stable, like the wild-type Nm23-H1/NDP kinase A, or are misfolded, like its S120G mutant. We therefore suggest that the low thermodynamic stability and the folding intermediate of the Nm23-H1/NDP kinase A may be necessary for its regulatory properties.  相似文献   

2.
Nucleoside diphosphate (NDP) kinase has a central role in the synthesis of (deoxy-)trinucleotides. In addition, mutations in the gene encoding NDP kinase have been shown to have important consequences for Drosophila development and mammalian tumorogenesis. We have overexpressed, in Dictyostelium discoideum, a genomic clone encoding the enzyme NDP kinase. The concomitant increase in the levels of RNA and enzyme activity identifies a 5′ non-coding genomic region of 0.9 kb as being the complete promoter region. Overexpression of wild-type NDP kinase has no effect on development. This is also true for an inactive mutant H122C that does not have a dominant inhibitor effect. Overexpression of the P105G mutant NDP kinase, which is known to be affected in its stability in vitro, only leads to a small increase in total NDP-kinase activity. Thermal and chemical denaturation experiments demonstrate the formation of hexameric hybrids between wild-type and mutant monomers.  相似文献   

3.
In this paper, we studied the interaction of the human isoform B of nucleoside diphosphatekinase (NDP kinase B) with the nuclease hypersensitive element (NHE) present in the promoterelement of the c-myc oncogene. The DNA-binding properties of NDP kinase B and otherNDP kinases are compared and the nucleotide requirement for binding are discussed. Usingquantitative methods, we identified the DNA-binding sites on the protein and we proposed astructural model for a complex of one hexameric NDP kinase B with an oligonucleotide.  相似文献   

4.
Three-dimensional structures are known from X-ray studies of the nucleoside diphosphate(NDP) kinase of many organisms from bacteria to human. All NDP kinases have subunits ofabout 150 residues with a very similar fold based on the sandwich orferredoxin fold.This fold is found in many nucleotide or polynucleotide-binding proteins with no sequencerelationship to NDP kinase. This common fold is augmented here with specificfeatures: asurface -helix hairpin, the Kpn loop, and the C-terminal extension. The -helix hairpin andKpn loop make up the nucleotide binding site, which is unique to NDP kinase and differentfrom that of other kinases or ATPases. The Kpn loop and the C-terminal extension are alsoinvolved in the quaternary structure. Whereas all known eukaryotic NDP kinases, includingmitochondral enzymes, are hexamers, some bacterial enzymes are tetramers. However,hexameric and tetrameric NDP kinases are built from the same dimer. The structural environmentof the active histidine is identical in all. The nucleotide binding site is also fully conserved,except for a feature implicating C-terminal residues in the hexamer, but not in the tetramer.Structural data on the native and phosphorylated enzyme, complexes with substrates, inhibitor,and a transition state analog, give a solid basis to a mechanism of phosphate transfer in whichthe largest contributors to catalysis are the 3-OH of the sugar and the bound Mg2+ in thenucleotide substrate. In contrast, we still lack structural data relating to DNA binding andother functions of NDP kinases.  相似文献   

5.
Nucleoside diphosphate (NDP) kinases are ubiquitous enzymes that transfer gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates via a ping-pong mechanism. The important role of this large family of enzymes in controlling cellular functions and developmental processes along with their crystallizability has made them good candidates for structural studies. We recently determined the structure of an evolved version of an NDP kinase from Pyrobaculum aerophilum, an extreme thermophile. This NDP kinase has similarity to the 42 other NDP kinases deposited in the Protein Data Bank (PDB) but differs significantly in sequence, structure, and biophysical properties. The P. aerophilum NDP kinase sequence contains two unique segments not present in other NDP kinases, comprising residues 66-100 and 156-165. We show that deletion mutants of the P. aerophilum NDP kinase lacking either or both of these inserts have an altered substrate specificity, allowing dGTP as the phosphate donor. A structural analysis of the evolved NDP kinase in conjunction with mutagenesis experiments suggests that the substrate specificity of the P. aerophilum NDP kinase is related to the presence of these two inserts.  相似文献   

6.
Nm23 was the first metastasis suppressor gene identified. This gene encodes a NDP kinase that also exhibits other properties like histidine protein kinase and interactions with proteins and DNA. The S120G mutant of NDPK-A has been identified in aggressive neuroblastomas and has been found to reduce the metastasis suppressor effect of Nm23. In order to understand the differences between the wild type and the S120G mutant, we have determined the structure of both mutant and wild type NDPK-A in complex with ADP. Our results reveal that there are no significant changes between the two enzyme versions even in the surroundings of the catalytic histidine that is required for NDP kinase activity. This suggests that the S120G mutation may affect an other protein property than NDP kinase activity.  相似文献   

7.
8.
Putative functions of nucleoside diphosphate kinase in plants and fungi   总被引:4,自引:0,他引:4  
The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His ) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as light-induced polarity of perithecia. In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.  相似文献   

9.
X-ray structure of nucleoside diphosphate kinase.   总被引:8,自引:0,他引:8  
The X-ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta-sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro----Ser substitution in Killer of prune (K-pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three-dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins.  相似文献   

10.
The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications.  相似文献   

11.
The family of glutamate dehydrogenases include a group of hexameric oligomers with a subunit M(r) of around 50,000, which are closely related in amino acid sequence and a smaller group of tetrameric oligomers based on a much larger subunit with M(r) 115,000. Sequence comparisons have indicated a low level of similarity between the C-terminal portion of the tetrameric enzymes and a substantial region of the polypeptide chain for the more widespread hexameric glutamate dehydrogenases. In the light of the solution of the three-dimensional structure of the hexameric NAD(+)-linked glutamate dehydrogenase from Clostridium symbiosum, we have undertaken a detailed examination of the alignment of the sequence for the C-terminal domain of the tetrameric Neurospora crassa glutamate dehydrogenase against the sequence and the molecular structure of that from C. symbiosum. This analysis reveals that the residues conserved between these two families are clustered in the three-dimensional structure and points to a remarkably similar layout of the glutamate-binding site and the active-site pocket, though with some differences in the mode of recognition of the nucleotide cofactor.  相似文献   

12.
Nucleoside diphosphate (NDP) kinase is one of the enzymes that maintains triphosphate pools. Escherichia coli strains (ndk) lacking this enzyme have been shown to be modest base substitution mutators, and two members of the human family of NDP kinases act as tumor suppressors. We show here that in E. coli strains lacking NDP kinase high levels of mispairs are generated, but most of these are corrected by the mismatch-repair system. Double mutants that are ndk mutS, lacking both the NDP kinase and mismatch repair, have levels of base substitutions 15-fold higher and levels of certain frameshifts up to 10-fold higher than those of the respective mutations in mutS strains that are NDP kinase proficient. A sequence analysis of the specificity of base substitution mutations generated in ndk and ndk mutS backgrounds as well as other experiments suggests that NDP kinase deficiency stimulates polymerase errors that lead to A:T --> G:C transitions and that the editing capacity of cells may be affected, leading to additional uncorrected mispairs and to A:T --> T:A transversions.  相似文献   

13.
Nucleoside diphosphate kinase plays a distinctive metabolic role as the enzyme poised between the last reaction of deoxyribonucleoside triphosphate (dNTP) biosynthesis and the DNA polymerization apparatus. In bacteriophage T4 infection, NDP kinase is one of very few enzymes of host cell origin to participate in either dNTP synthesis or DNA replication. Yet NDP kinase forms specific contacts with phage-coded proteins of dNTP and DNA synthesis. This article summarizes work from our laboratory that identifies and characterizes these interactions. Despite these specific interactions, the enzyme appears to be dispensable, both for T4 replication and for growth of the host, Escherichia coli, because site-specific disruption of ndk, the structural gene for NDP kinase, does not interfere with growth of the host cell and only partly inhibits phage replication. However, ndk disruption unbalances the dNTP pools and stimulates mutagenesis. We discuss our attempts to understand the basis for this enhanced mutagenesis.  相似文献   

14.
A cDNA clone (TAB2) encoding a nucleoside diphosphate (NDP) kinase has been isolated from a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) cDNA library. The clone is 590 bp long and exhibits a high degree of sequence identity with spinach NDP kinases I and II, Pisum sativum NDP kinase I, Arabidopsis thaliana NDP kinase, Drosophila melanogaster NDP kinase, Dictyostelium discoideum NDP kinase and human Nm 23-H1 and Nm23-H2. Northern analysis has revealed that the mRNA encoded by TAB2 is up-regulated in both leaf and stem tissue in response to wounding. The increase is apparent within 1 h of wounding and is not further elevated by application of ethylene. Southern blot analysis indicates that TAB2 is a member of a small gene family.  相似文献   

15.
Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila. NDP kinase bound α-labeled ATP and GTP, and a photoreactive GTP analog labeled both subunits. Purified NDP kinase underwent autophosphorylation on a histidine and a serine residue using either ATP or GTP as a substrate. The enzyme also catalyzed acid-stable phosphorylation of casein and phosvitin. This protein kinase activity is distinct from the histidine phosphorylation that is part of the NDP kinase catalytic cycle. Antiserum against the purified protein from Paramecium cross-reacted with 16- to 20-kDa proteins in most species tested, and with a larger protein (44 kDa) in Paramecium, Xenopus, and two human lines. The multiple forms (20 and 44 kDa) of the NDP kinase in Paramecium and its protein kinase activity, suggest that the protein is more than a housekeeping enzyme; it may have regulatory roles such as those of the NDP kinase-like awd protein of Drosophila and Nm23 protein of humans.  相似文献   

16.
17.
In both prokaryotic and eukaryotic organisms, nucleoside diphosphate kinase is a multifunctional protein, with well defined functions in ribo- and deoxyribonucleoside triphosphate biosynthesis and more recently described functions in genetic and metabolic regulation, signal transduction, and DNA repair. This paper concerns two unusual properties of nucleoside diphosphate (NDP) kinase from Escherichia coli: 1) its ability to interact specifically with enzymes encoded by the virulent bacteriophage T4 and 2) its roles in regulating metabolism of the host cell. By means of optical biosensor analysis, fluorescence spectroscopy, immunoprecipitation, and glutathione S-transferase pull-down assays, we have shown that E. coli NDP kinase interacts directly with T4 thymidylate synthase, aerobic ribonucleotide reductase, dCTPase-dUTPase, gene 32 single-strand DNA-binding protein, and deoxycytidylate hydroxymethylase. The interactions with ribonucleotide reductase and with gp32 are enhanced by nucleoside triphosphates, suggesting that the integrity of the T4 dNTP synthetase complex in vivo is influenced by the composition of the nucleotide pool. The other investigations in this work stem from the unexpected finding that E. coli NDP kinase is dispensable for successful T4 phage infection, and they deal with two observations suggesting that the NDP kinase protein plays a genetic role in regulating metabolism of the host cell: 1) the elevation of CTP synthetase activity in an ndk mutant, in which the structural gene for NDP kinase is disrupted, and 2) the apparent ability of NDP kinase to suppress anaerobic growth in a pyruvate kinase-negative E. coli mutant. Our data indicate that the regulatory roles are metabolic, not genetic, in nature.  相似文献   

18.
Two types of nucleoside diphosphate kinase (NDP kinase I and NDP kinase II) have been purified from spinach leaves to electrophoretic homogeneity. The enzymes were copurified with apparent [35S]GTP-gamma S-binding activities. NDP kinase I, which was not adsorbed to a hydroxyapatite column, and NDP kinase II, which was adsorbed, had molecular weights of 16,000 and 18,000, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weights determined by gel filtration were 92,000 and 110,000, respectively, suggesting that both enzymes are composed of six identical subunits. Minor differences in some amino acids between NDP kinase I and NDP kinase II were observed when both enzymes were analyzed for amino acid composition. The apparent [35S]GTP gamma S-binding activity of purified NDP kinase I and NDP kinase II was found to be due to the formation of a [35S]thiophosphorylated enzyme, which is the intermediate of the NDP kinase reaction.  相似文献   

19.
The role of nucleoside diphosphate (NDP) kinases in cell growth, differentiation, and tumormetastasis in relation to signal transduction was investigated. The essential role of NDP kinasein cell growth was validated by coupling between reduced NDP kinase levels, induced byantisense oligonucleotides, and the suppression of proliferative activity of a cultured cell line.In addition, because NDP kinase levels are often enhanced with development and differentiation,as has been demonstrated in postmitotic cells and tissues, such as the heart and brain, wefurther examined this possibility using the bone tissue (osteoblasts) and a cultured cell linePC12D. The enhanced NDP kinase accumulation was demonstrated in the matured osteoblastsin vivo and in vitro by immunohistochemistry. In PC12D cells neurite outgrowth took placein NDP kinase -transfected clones without differentiation inducers, which was accompaniedby prolongation of doubling time. Neurite outgrowth, triggered by nerve growth factor and acyclic AMP analog, was down-regulated upon forced expression of inactive mutant NDPkinase by virtue of a dominant negative effect. NDP kinase -transfected rat mammaryadenocarcinoma cells (MTLn3) and nm23-H2-transfected human oral squamous cell carcinomacells (LMF4) manifested reduced metastatic potential and were associated with an alteredsensitivity to environmental factors, such as motility and growth factors. NDP kinase ,compared to NDP kinase , was involved in a wide variety of the cellular phenomena examined.Taken together, NDP kinase isoforms appear to elicit both their own respective and commoneffects. They may have an ability to lead cells to both proliferative and differentiated statesby modulating responsiveness to environmental factors, but their fate seems to depend on theirsurrounding milieu.  相似文献   

20.
Nickel superoxide dismutase (NiSOD) is unique among the family of superoxide dismutase enzymes in that it coordinates Cys residues (Cys2 and Cys6) to the redox-active metal center and exhibits a hexameric quaternary structure. To assess the role of the Cys residues with respect to the activity of NiSOD, mutations of Cys2 and Cys6 to Ser (C2S-NiSOD, C6S-NiSOD, and C2S/C6S-NiSOD) were carried out. The resulting mutants do not catalyze the disproportionation of superoxide, but retain the hexameric structure found for wild-type NiSOD and bind Ni(II) ions in a 1:1 stoichiometry. X-ray absorption spectroscopic studies of the Cys mutants revealed that the nickel active-site structure for each mutant resembles that of C2S/C6S-NiSOD and demonstrate that mutation of either Cys2 or Cys6 inhibits coordination of the remaining Cys residue. Mutation of one or both Cys residue(s) in NiSOD induces the conversion of the low-spin Ni(II) site in the native enzyme to a high-spin Ni(II) center in the mutants. This result indicates that coordination of both Cys residues is required to generate the native low-spin configurations and maintain catalytic activity. Analysis of the quaternary structure of the Cys mutants by differential scanning calorimetry, mass spectrometry, and size-exclusion chromatography revealed that the Cys ligands, particularly Cys2, are also important for stabilizing the hexameric quaternary structure of the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号