首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

2.
Witczak ZJ  Lorchak D  Nguyen N 《Carbohydrate research》2007,342(12-13):1929-1933
The base catalyzed conjugate Michael addition of the 1-thiosugar, 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranose, 1, to a new highly reactive enone 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose, 2, proceeds steroselectively with formation of adduct 3 in 94% yield. Convenient stereoselective reduction of the C-3 keto function of 3 with L-Selectride followed by in situ acetylation produces thiodisaccharide 4 in good 82% yield. Cleavage of the 1,2-O-isopropylidene protecting group with p-toluenesulfonic acid in methanol, followed by de-O-acetylation, produced an inseparable anomeric mixture of methyl 4-deoxy-5-C-(beta-D-glucopyranosyl)-thio-alpha/beta-L-ribo-pyranoside 5 in 72% overall yield. This approach constitutes a new general two-step click chemistry route to the previously unknown class of 4-deoxy-(1-->5)-5-C-thiodisaccharides as stable and biologically important glycomimetics.  相似文献   

3.
Proteoglycans consist of a protein core, with one or more glycosaminoglycan chains (i.e., chondroitin sulfate, dermatan sulfate and heparin sulfate) bound covalently to it. The glycosaminoglycan chains account for many of the functions and properties of proteoglycans. The development of proteoglycan glycotechnology to exploit the functionality of glycosaminoglycan chains is an extremely important aspect of glycobiology. Here we describe an efficient and widely applicable method for chemoenzymatic synthesis of conjugate compounds comprising intact long chondroitin sulfate (ChS) chains. An alkyne containing ChS was prepared by an enzymatic transfer reaction and linked with a chemically synthesized core compound containing an azido group using click chemistry. This method enabled highly efficient introduction of ChS into target materials. Furthermore, the ChS-introduced compounds had marked stability against proteolysis, and the chemically linked ChS chain contributed to the stability of these core compounds. We believe the present method will contribute to the development of proteoglycan glycobiology and technology.  相似文献   

4.
A differentiated population of cells with metachromatically staining granules and surface IgE receptors was obtained from mouse bone marrow cultured for 2 weeks in the presence of conditioned medium derived from concanavalin A-stimulated splenocytes. The cells were found to incorporate large amounts of [35S]sulfate into an intracellular 35S-labeled proteoglycan of Mr approximately 200,000 containing a maximum of seven glycosaminoglycan side chains (Mr = 25,000). After chondroitinase ABC treatment of density gradient-purified [3H] serine-labeled proteoglycan, the resulting core was Mr approximately 26,000 as assessed by gel filtration. Two-dimensional cellulose acetate electrophoresis of beta-eliminated 35S-labeled glycosaminoglycan revealed a single type of glycosaminoglycan that migrated at the position of oversulfated chondroitin sulfate E from squid cartilage. Chondroitinase ABC degradation of the 35S-labeled glycosaminoglycan yielded two cleavage products in approximately equal molar amounts which co-migrated in both descending paper chromatography and high voltage paper electrophoresis with a monosulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose, and a disulfated disaccharide, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-6-di-O-sulfo-D-galactose. The release of some free [35S]sulfate from the oversulfated disaccharide with either chondro-4-sulfatase or chondro-6-sulfatase and the complete desulfation by their combined action established that the oversulfated disaccharide contained N-acetylgalactosamine-4,6-disulfate. The 35S]labeled proteoglycan of these unique IgE receptor-bearing and histamine-containing cells, therefore, is composed of chondroitin sulfate E rather than heparin glycosaminoglycan, and thus is the first identification of such an intracellular localized proteoglycan in a mammalian cell.  相似文献   

5.
Xylosides are small molecules that serve as primers of glycosaminoglycan biosynthesis. Xyloside mediated modulation of biological functions depends on the extent of priming activity and fine structures of primed GAG chains. In earlier studies, copper (Cu) catalyzed synthesis of click-xylosides and their priming activity were extensively documented. In the current study, ruthenium (Ru) mediated catalysis was employed to synthesize xylosides with a 1,5-linkage between the xylose and the triazole ring instead of a 1,4-linkage as found in Cu-catalyzed click-xyloside synthesis. Mono- and bis-click-xylosides were synthesized using each catalytic method and their glycosaminoglycan priming activity was assessed in vitro using a cellular system. Ru-catalyzed click-xylosides showed a higher priming activity as measured by incorporation of radioactive sulfate into primed glycosaminoglycan chains. This study demonstrates that altering the linkage of the aglycone to the triazole ring changes the priming activity. Computational modeling provides a molecular rationale for higher priming ability of Ru-mediated click-xylosides. Higher GAG priming activity is attributed to the formation of more stable interactions between the 1,5-linked xylosides and β-1,4-galactosyltransferase 7 (β4GalT7).  相似文献   

6.
The control of glycosaminoglycan biosynthesis was investigated by studying the kinetic and regulatory properties of some enzymes involved in the formation of UDP-sugar precursors: UDP-N-acetylglucosamine 4'-epimerase, catalyzing the interconversion of hexosamine precursors and UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase, utilizing UDP-glucose for the formation of uronic acid and galactose precursors. The study was carried out in tissues with different glycosaminoglycan production: bovine cornea, producing both chondroitin sulfate and keratan sulfate, and newborn-pig epiphysial-plate cartilage, producing mostly chondroitin sulfate. The biosynthesis of hexosamine precursors appeared to be regulated by the value of the NAD/NADH ratio. This control mechanism regulated also the activities of both UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase and, therefore, it could correlate the biosynthesis of glycosaminoglycan precursors with the redox activity of the cell. At the level of UDP-glucose utilization two other control mechanisms were demonstrated: the different affinities of UDP-glucose dehydrogenase and UDP-glucose 4'-epimerase for UDP-glucose in tissues with different glycosaminoglycan production and the cellular concentration of UDP-xylose. This sugar-nucleotide inhibited UDP-glucose dehydrogenase, but did not affect the UDP-glucose 4'-epimerase activity; therefore, and increase of its cellular concentration may result in a decreased chondroitin sulfate synthesis and in an increased keratan sulfate formation.  相似文献   

7.
A number of glycosaminoglycan (GAG) species related to heparin, dermatan sulfate (DeS) and chondroitin sulfate were tested for their ability to interfere with the physiological expression and/or pathological overexpression of the TGF-β1 gene. The influence of the molecular weight, molecular weight distribution, degree of sulfation and location of the sulfate groups was examined in an attempt to unveil fine relationships between structure and activity. The nature of the polysaccharide plays a major part, heparins proving able to inhibit both basal and stimulated TGF-β1 gene expression, DeSs being essentially inactive and chondroitin sulfates only inhibiting stimulated TGF-β1 gene expression. Within this frame, the particular physical and chemical properties of some GAGs appear to further modulate TGF-β1 gene response. Judging from our investigation, chondroitin sulfates seem the most promising for potential pharmacological applications in disorders characterized by fibrogenic TGF-β1 overexpression.  相似文献   

8.
In mammals, the xylosylprotein beta4-galactosyltransferase termed beta4GalT7 (XgalT-1, EC ) participates in proteoglycan biosynthesis through the transfer of galactose to the xylose that initiates each glycosaminoglycan chain. A Drosophila cDNA homologous to mammalian beta4-galactosyltransferases was identified using a human beta4GalT7 cDNA as a probe in a BLAST analysis of expressed sequence tags. The Drosophila cDNA encodes a type II membrane protein with 322 amino acids and shows 49% identity to human beta4GalT7. Extracts from L cells transfected with the cDNA exhibited marked galactosyltransferase activity specific for a xylopyranoside acceptor. Moreover, transfection with the cloned cDNA restored glycosaminoglycan synthesis in beta4GalT7-deficient Chinese hamster ovary cells. In transfectant lysates the properties of Drosophila and human beta4GalT7 resembled each other, except that Drosophila beta4GalT7 showed a less restricted specificity and was active at a wider range of temperatures. Drosophila beta4GalT7 is expressed throughout development, with higher expression levels in adults. Reduction of Drosophila beta4GalT7 levels using expressed RNA interference (RNAi) in imaginal discs resulted in an abnormal wing and leg morphology similar to that of flies with defective Hedgehog and Decapentaplegic signaling, which are known to depend on intact proteoglycan biosynthesis. Immunohistochemical analysis of tissues confirmed that both heparan sulfate and chondroitin sulfate biosynthesis were impaired. Our results demonstrate that Drosophila beta4GalT7 has the in vitro and in vivo properties predicted for an ortholog of human beta4GalT7 and is essential for normal animal development through its role in proteoglycan biosynthesis.  相似文献   

9.
A short synthesis of chemoselective chitosan derivatives was achieved by copper-catalyzed Huisgen cycloaddition, which is an ideal reaction for click chemistry, by using N-(4-azidophthaloyl)-chitosan. N-(4-azidophthaloyl)-chitosan was prepared through chemoselective N-bromophthaloylation of chitosan in acidic water and subsequent azidation. The obtained N-(4-bromopthaloyl)-chitosan had higher solubility in common solvents than conventional phthaloyl chitosan. N-(4-azidophthaloyl)-chitosan was successfully converted with ethynyl derivatives having functional groups (hydroxymethyl, phenyl, and methyl ester) in the presence of copper(II) sulfate, sodium ascorbate and/or trimethylamine. FT-IR spectra, elemental analyses, and (1)H and (13)C NMR spectra supported that the desired chitosan derivatives were chemoselectively transferred by these groups with a 1,4-triazole linker.  相似文献   

10.
Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1 -thio-D-glucitol, 1 ,6:2,5-dianhydro-3-O-methanesulfonyl-1 -thio-D-glucitol and 1 ,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1-thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-alpha-L- (23) and 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-alpha-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained alpha-thioglycosides was determined in rats, using Pescador's model.  相似文献   

11.
The basic fragmentation mechanism of methyl(methyl 4-deoxy-2,3-di-O-methyl-β-l-threo-hex-4-enopyranosid)uronate has been deduced by deuteromethylation analysis, metastable transition measurements, and by interpreting the spectra of weakly excited foregoing molecules. The differences in fragmentation of partially methylated derivatives of methyl 4-deoxy-β-l-threo-hex-4-enopyranosiduronic acid compared to that of the fully methylated substance are discussed in detail and the criteria are proposed for identification of the compounds concerned by mass spectrometry.  相似文献   

12.
Two methods are presented for the synthesis of methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside. The first method employs the Barton-McCombie deoxygenation methodology, and the second method utilizes an oxidation-beta-elimination methodology that allows for the incorporation of hydrogen isotopes into the title compound. Hence, methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside (4) and methyl 2-acetamido-2,4-dideoxy-beta-D-xylo-hexopyranoside-6-t (14) were synthesized and evaluated for their ability to inhibit hepatocyte, cell-surface glycosaminoglycan biosynthesis and to incorporate a [(3)H] radiolabel into isolated glycosaminoglycans, respectively. Compound 4, at a concentration of 1.0 mM, demonstrated a reduction of D-[(3)H]glucosamine and [(35)S]sulfate incorporation into isolated glycosaminoglycans by 69 and 59%, of the control cultures, respectively. At 10 and 20 mM, 4 demonstrated a maximum inhibition of incorporation of both radiolabels to approximately 10% of the control cultures. Compound 14 demonstrated a maximum incorporation of a [(3)H] radiolabel into isolated cell-surface glycosaminoglycans at 10 and 20 mM. The mechanism of inhibition of glycosaminoglycan biosynthesis is due, in part, to the incorporation of a 4-deoxy moiety into glycosaminoglycan chains resulting in premature chain termination.  相似文献   

13.
Bovine pancreatic trypsin was chemically modified by several β-cyclodextrin (β-CD) derivatives using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as coupling agent. The modifying agents used were mono-6-amino-6-deoxy-β-cyclodextrin (CDNH2), mono-6-ethylenediamino-6-deoxy-β-cyclodextrin (CDEN), mono-6-propylenediamino-6-deoxy-β-cyclodextrin (CDPN) and mono-6-butylenediamino-6-deoxy-β-cyclodextrin (CDBN). The enzyme–cyclodextrin conjugates contained about 2 mol of oligosaccharide per mol of trypsin. The catalytic and thermal stability properties of trypsin were improved by the attachment of cyclodextrin residues, and these effects were markedly noticeable for cyclodextrin (CD) derivatives having an even number of carbon atoms in the spacer arms. The thermostability of the enzyme was increased by about 2.4–14.5 °C after modification. The conjugates prepared were also more stable against thermal incubation at different temperatures ranging from 45 to 60 °C. In comparison with native trypsin, the enzyme–cyclodextrin complexes were markedly more resistant to autolytic degradation at pH 9.0. Attending to the results here reported, we suggest that conjugation of enzymes with β-CD derivatives might be an useful method for improving the stability and the catalytic properties of these biocatalysts.  相似文献   

14.
2-Amino-2,4-dideoxy-4-fluoro- and 2-amino-2,4,6-trideoxy-4, 6-difluoro-D-galactose, and 2-amino-2,4-dideoxy-4-fluoro- and 2-amino-4-deoxy-4, 4-difluoro-D-xylo-hexose were synthesized, as potential modifiers of tumor cell-surface glyco-conjugate, from benzyl 2-acetamido-3-O-benzyl-2-deoxy-4, 6-di-O-mesyl-alpha-D-glucopyranoside and benzyl 2-acetamido-3, 6-di-O-benzyl-2-deoxy-4-O-mesyl-alpha-D-glucopyranoside, which were converted into the corresponding 4,6-difluoro-2,4, 6-trideoxy and 2,4-dideoxy-4-fluoro derivatives. Benzyl 2-acetamido-2-deoxy-4-O-mesyl-alpha-D-galactopyranoside and benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-alpha-D-xylo-hexo-4-ulopyra noside were treated with diethylaminosulfur trifluoride to give 2-amino-2,4-dideoxy-4-fluoro-D-glucose and 2-amino-2,4-dideoxy-4, 4-di-fluoro-D-xylo-hexose derivatives, respectively, to give after deprotection the target compounds. Several of the peracetylated sugar derivatives inhibited L1210 tumor-cell growth in vitro at concentrations of 1-5 10(-5) M. The peracetylated derivative of 2-amino-2,4-dideoxy-4-fluoro-D-galactose inhibited protein and glycoconjugate biosynthesis, and also exhibited antitumor activity in mice with L1210 leukemia.  相似文献   

15.
Decarboxylative elimination of methyl 2,3-di-O-benzyl-α-D-glucopyranosiduronic acid (1) with N,N-dimethylformamide dineopentyl acetal in N,N-dimethylformamide gave methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pent-4-enopyranoside (3). Debenzylation of 3 was effected with sodium in liquid ammonia to give methyl 4-deoxy-β-L-threo-pent-4-enopyranoside (4). Hydrogenation of 3 catalyzed by palladium-on-barium sulfate afforded methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pentopyranoside (5), whereas hydrogenation of 3 over palladium-on-carbon gave methyl 4-deoxy-β-L-threo-pentopyranoside (6). An improved preparation of methyl 4,6-O-benzylidene-α-D-glucopyranoside is also described.  相似文献   

16.
Heparin is a naturally occurring glycosaminoglycan isolated from animal tissues and is medically used as an anticoagulant drug. Adulteration attempts of isolated heparin with chondroitin sulfate in the past resulted in great safety concerns. Also, increasing demands on batch-to-batch homogeneity for better evaluation and control of its pharmacodynamic and pharmacokinetic properties kindled the development of synthetic routes for the production of heparin and its derivatives. The discovery of enzymes involved in glycosaminoglycan biosynthesis and their application in chemoenzymatic synthesis makes it feasible to generate low molecular weight heparins (LMWHs) and ultra-low molecular weight heparins (ULMWHs). Understanding the scope and limitations of these enzymes currently used in the production of synthetic heparins will help to achieve more defined heparins with controlled medicative properties. Here, we summarized the recent advances in the chemoenzymatic synthesis of LMW/ULMW heparins.  相似文献   

17.
Abstract

1-O-Acetyl-3,5-di-O-benzoyl-2-deoxy-4-thio-α,β-D-ribofuranose and its 3-azido analogue have been prepared by an efficient route starting from L-arabinose. A key intermediate in this route is 2-deoxy-4,5-O-isopropylidene-L-erythro-pentose dibenzyl dithioacetal which is readily substituted in the 3-position thus offering extensive scope for the synthesis of 3-substituted 2-deoxy-4-thio-α,β-D-ribofuranoses and subsequent nucleoside derivatives.  相似文献   

18.
Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor.Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor.Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry.In addition,a modified form of heparan sulfate,known as 3-O-sulfated heparan sulfate,interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane.The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carded out by a family of enzymes known as 3-O-sulfotransferases.Due to its involvement in multiple steps of the infection process,heparan sulfate has been a prime target for the development of agents to inhibit HSV entry.Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus,but it may also be crucial in the fight against many other pathogens as well.  相似文献   

19.
Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.  相似文献   

20.
A series of novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl]podophyllotoxin derivatives were synthesized by employing Cu(I)-catalyzed click chemistry and evaluated for their anticancer activity against a panel of seven human cancer cell lines (HT-29, HCT-15, 502713, HOP-62, A-549, MCF-7, and SF-295). The compounds 9b, 9c, 9e, 9f, and 9h showed significant cytotoxic activities especially against HT-29, HCT-15, 502713 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号