首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following a lag of about 30 min, the F1-ATPase from the thermophilic bacterium, PS3 (TF1), was inactivated slowly by 0.8 mM 5'-p-fluorosulfonylbenzoyladenosine (FSBA) at 23 degrees C and pH 7.0. When the enzyme was treated with 0.2 mM FSBA at pH 7.0 and 23 degrees C for 15 min and gel-filtered, no enzyme activity was lost. However, the lag in inactivation was abolished when the enzyme was subsequently incubated with 2.0 mM FSBA at 23 degrees C in the pH range from 6.8 to 10.0. The pH-inactivation profile obtained under these conditions revealed a pK alpha of about 9.3 which was associated with the inactivation. When pretreated TF1 was inactivated at 23 degrees C with [3H]FSBA by about 90%, greater than 20 mol of [3H]SBA was incorporated per mole of enzyme. TF1 was inactivated rapidly by 0.8 mM FSBA at pH 6.4 and 65 degrees C, and no lag was observed. Following inactivation of TF1 with 0.8 mM [3H]FSBA at 65 degrees C and pH 6.4, about 10 mol of [3H]SBA was incorporated per mole of enzyme. When a tryptic digest of the labeled enzyme was fractionated by reversed-phase high-performance liquid chromatography, a single major radioactive peptide was isolated. When subjected to automatic Edman degradation, this peptide was shown to have the amino acid sequence: A-L-A-P-E-I-V-G-E-E-H-X-Q-V-A-R, where X indicates that a phenylthiohydantoin derivative was not detected in cycle 12. However, from the DNA sequence of the gene encoding the subunit of TF1 (Y. Kagawa, M. Ishizuka, T. Saishu, and S. Nakao (1985) Abstracts International Symposium on Energy Transducing ATPases, Kobe, Japan, p. 84), this position has been shown to be occupied by tyrosine. This tyrosine is homologous with beta-Tyr-368 of the bovine mitochondrial F1-ATPase (MF1) the modification of which is responsible for the inactivation MF1 by FSBA.  相似文献   

2.
The mitochondrial F1-ATPase is irreversibly inactivated by the adenine nucleotide analogue, p-fluorosulfonylbenzoyl-5'-adenosine. This inactivation is partly prevented by the presence of bound adenine nucleotides. Inactivations of the ATPase with p-fluorosulfonyl[14C]benzoyl-5'-adenosine were most efficiently accomplished with the nucleotide-free enzyme at pH 7.0, in a buffer containing 20% glycerol. Under these conditions, 4.2 g atoms of 14C are incorporated per 350,000 g of enzyme when the ATPase is inactivated by 90% by its reaction with 2 mM p-fluorosulfonyl[14C]benzoyl-5'-adenosine. Isolation of the component polypeptide chains of the labeled ATPase showed that all of the radioactivity was associated with the two largest subunits. The isolated alpha subunit contained 0.45 g atom of 14C/mol and the isolated beta subunit contained 0.88 g atom of 14C/mol. Hence, the inactivation can be correlated with the incorporation of 14C into the beta subunit. This suggests that the hydrolytic site of the enzyme resides on this subunit. The majority of the radioactivity in a tryptic digest of labeled beta subunit is contained ina tryptic peptide that has the following amino acid sequence: Ile-Met-Asp-Pro-Asn-Ile-Val-Gly-Ser-Glu-His-Tyr-Asp-Val-Ala-Arg, where Tyr is the radioactive derivative of the tyrosine residue that was sulfonylated during the inactivation.  相似文献   

3.
The aziridinium of purified quinacrine mustard at 50 microM inactivates the bovine heart mitochondrial F1-ATPase with a pseudo-first order rate constant of 0.07 min-1 at pH 7.0 and 23 degrees C. An apparent Kd of 27 microM for the enzyme-reagent complex was estimated from the dependence of the rate of inactivation on the concentration of quinacrine mustard. The pH inactivation profile revealed that deprotonation of a group with a pKa of about 6.7 is necessary for inactivation. The amount of reagent incorporated into the protein increased linearly with the extent of inactivation. Complete inactivation was estimated to occur when 3 mol of reagent were incorporated/mol of F1. Enzyme, in which steady state ATPase was inactivated by 98% by quinacrine mustard, hydrolyzed substoichiometric ATP with zero order kinetics suggesting that residual activity is catalyzed by F1 in which at least one beta subunit is modified. By exploiting the reactivity of the aziridinium of covalently attached reagent with [3H] aniline, sites modified by quinacrine mustard were labeled with 3H. Isolation of radioactive cyanogen bromide peptides derived from F1 inactivated with the reagent in the presence of [3H]aniline which were identified by sequence analysis and sequence analyses of radioactive tryptic fragments arising from them have revealed the following. About two thirds of the radioactivity incorporated into the enzyme during inactivation is apparently esterified to one or more of the carboxylic acid side chains in a CNBr-tryptic fragment of the beta subunit with the sequence: 394DELSEEDK401. The remainder of the radioactivity is associated with at least two sites within the cyanogen bromide peptide containing residues 293-358 of the beta subunit. From these results it is concluded that inactivation of F1 by the aziridinium of quinacrine mustard is due, at least in part, to modification of one or more of the carboxylic acid side chains in the DELSEED segment of the beta subunit and possibly also to modification of unspecified amino acid side chains between residues 302-356 of the beta subunit.  相似文献   

4.
The inactivation of the bovine heart mitochondrial F1-ATPase by 5'-p-fluorosulfonylbenzoylinosine (FSBI) proceeds with pseudo-first order kinetics. The rate of inactivation increased from pH 7 to 9 revealing a pKa of about 8.2. When a tryptic digest of the enzyme which had been inactivated with 5'-p-fluorosulfonylbenzoyl[3H]inosine ([3H]FSBI) was submitted to reversed phase high pressure liquid chromatography, a single major peak of radioactivity, T1, was resolved. Amino acid sequence analysis of purified peptide fragments derived from T1 showed that the modification of beta-Tyr-345 is responsible for inactivation of the enzyme. Complete inactivation of the enzyme by [3H]FSBI is estimated to proceed with modification of 0.8 mol of beta-Tyr-345/mol of enzyme. Another notable observation is that inosine triphosphatase (ITPase) activity catalyzed by F1 from bovine heart mitochondria is much more sensitive to inactivation by 5'-p-fluorosulfonylbenzoyladenosine (FSBA) than is ATPase activity. Whereas complete inactivation of ATPase activity by FSBA has been shown to proceed with the mutually exclusive modification of Tyr-368 or His-427 in all three copies of the beta subunit (Bullough, D. A., and Allison, W. S. (1986) J. Biol. Chem. 261, 5722-5730), it is shown here that complete inactivation of ITPase activity by FSBA is accompanied by modification of these residues in only one copy of the beta subunit. Inactivation of both the ATPase and ITPase activities of the enzyme by FSBI proceeds with modification of Tyr-345 in a single copy of the beta subunit.  相似文献   

5.
Escherichia coli H+-ATPase (ECF1) was inactivated in a time- and concentration-dependent manner by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a selective carboxyl group reagent. Among the subunits of ECF1, only the beta subunit was modified by EEDQ. The reaction of 1 mol of EEDQ per mol of ECF1 resulted in total inactivation, in spite of the fact that the enzyme possesses three beta subunits.  相似文献   

6.
Inactivation of the bovine heart mitochondrial F1-ATPase, taken as alpha 3 beta 3 gamma delta epsilon with a molecular weight of 375,000, with a 4-fold molar excess of 7-chloro-4-nitro[14C]benzofurazan at pH 7.5, led to the incorporation of 1.42 g atoms of 14C/mol. Treatment of the inactivated enzyme with dithiothreitol removed 0.99 g atom of 14C/mol of enzyme which was accompanied by reactivation of the ATPase. Therefore, of the 1.42 mol of 7-chloro-4-nitro-[14C]benzofurazan incorporated per mol of bovine heart mitochondrial F1-ATPase, 0.43 mol was present on lysine residues and 0.99 mol was present on tyrosine residues. When the inactivated enzyme was treated with 10 mM sodium dithionite at pH 6.0, 10% of the activity was recovered which was accompanied by a 10% loss in covalently bound 14C. Following dithionite treatment, that part of the 14C which remained covalently bound could not be removed by subsequent treatment of the labeled enzyme with dithiothreitol. It is presumed that dithionite reduces the 4-nitro group of the covalently bound reagent, converting it to 4-amino[14C]benzofurazan derivatives at lysine and tyrosine residues. The moles of 4-amino[14C]benzofurazan incorporated per mol of the isolated subunits were: alpha, 0.18; beta, 0.30; gamma, 0.03; and delta plus epsilon, less than 0.01. Gel filtration of a cyanogen bromide digest of the labeled beta subunit on Sephadex G-75 resolved a major 14C peak which contained 83% of the 14C recovered. The major, radioactive tryptic fragment derived from this peak was purified by gel filtration on Sephadex G-75 followed by reversed phase high performance liquid chromatography. Automatic Edman degradation of this peptide showed that the 14C was released at the position occupied by beta-Tyr-311.  相似文献   

7.
R Addison  G A Scarborough 《Biochemistry》1986,25(14):4071-4076
The carboxyl group activating reagent N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) interacts with the Neurospora plasma membrane H+-ATPase in at least three different ways. This reagent irreversibly inhibits ATP hydrolysis with kinetics that are pseudo-first-order at several concentrations of EEDQ, and an appropriate transform of these data suggests that 1 mol of EEDQ inactivates 1 mol of the H+-ATPase. Inhibition probably involves activation of an ATPase carboxyl group followed by a nucleophilic attack by a vicinal nucleophilic functional group in the ATPase polypeptide chain, resulting in an intramolecular cross-link. The enzyme is protected against EEDQ inhibition by MgATP in the presence of vanadate, a combination of ligands that has previously been shown to "lock" the H+-ATPase in a conformation that presumably resembles the transition states of the enzyme phosphorylation and dephosphorylation reactions, but is not protected by the substrate analogue MgADP, which is consistent with the notion that one or both of the residues involved in the EEDQ-dependent inhibitory intramolecular cross-linking reaction normally participate in the transfer of the gamma-phosphoryl group of ATP, or are near those that do. The ATPase is also labeled by the exogenous nucleophile [14C]glycine ethyl ester in an EEDQ-dependent reaction, and the labeling is diminished in the presence of MgATP plus vanadate. However, peptide maps of [14C]glycine ethyl ester labeled ATPase demonstrate that the labeling is not related to the EEDQ inhibition reaction in any simple way.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The characteristics and specificity of inactivation of the chloroplast F1-ATPase (CF1) with 7-chloro-4-nitrobenzofurazan (Nbf-Cl) have been investigated. Inactivation of the octylglucoside-dependent Mg2+-ATPase activity of latent CF1 by Nbf-Cl can be correlated with the formation of about 1.2 mol of Nbf-O-Tyr per mole of enzyme. Following inactivation of CF1 with [14C]Nbf-Cl, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the majority of the radioactive reagent incorporated is present in the beta subunit. Treatment of the enzyme with [14C]Nbf-Cl following dithiothreitol heat activation, led to similar labeling of the beta subunit and substantial incorporation of 14C into the gamma subunit. On complete inactivation, about 4 mol of Nbf-S-Cys is formed per mole of dithiothreitol-heat-activated CF1. Incorporation of 14C into the gamma subunit is prevented by prior treatment of the latent CF1 or of the dithiothreitol-heat-activated CF1 with iodoacetamide. Following incubation of the dithiothreitol-heat-activated CF1 with iodoacetamide, complete inactivation of the octylglucoside-dependent Mg2+-ATPase activity by Nbf-Cl can be correlated with the formation of about 1.2 mol of Nbf-O-Tyr per mole of enzyme. After stabilization of the [14C]Nbf-O-Tyr derivative by treatment with sodium dithionite, a labeled peptide was purified. Automatic Edman degradation of this peptide revealed the sequence V-X-V-P-A-D-(D). The majority of the radioactivity was cleaved in the second cycle, the position occupied in CF1 by Tyr-beta-328, which is homologous to Tyr-beta-311, the residue reactive with Nbf-Cl in the beef heart mitochondrial F1-ATPase. When CF1, modified at Tyr-beta-328 with Nbf-Cl, is incubated at pH 9.0, the Nbf-O-Tyr adduct is hydrolyzed, leading to concomitant recovery of the ATPase activity. In double labeling experiments, two-dimensional isoelectric focusing in the presence of urea followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicates that 2-azido-ADP, covalently bound at the tight ADP binding site, and the tyrosine modified by [14C]Nbf-Cl are located in different beta subunits.  相似文献   

9.
Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.  相似文献   

10.
When the F1-ATPase from the thermophilic bacterium, PS3, was inactivated by 90% with 7-chloro-4-nitro[14C]benzofurazan ([14C]Nbf-Cl) at pH 7.3 and then gel-filtered, 1.25 mols of [14C]Nbf-O-Tyr and less than 0.1 mol of Nbf-N-Lys were formed per mol of enzyme. After adjusting the pH of the gel-filtered, modified enzyme to 9.0 and incubating it for 14 hrs. at 23 degrees C to promote O----N migration, 0.68 mol of Nbf-N-Lys were formed per mol of enzyme while about 16% of the original activity reappeared. Isolation of the subunits after the O----N migration showed that 90% of the incorporated 14C was present in the beta subunit, which contained 0.21 mols of [14C]Nbf-N-Lys per mol. A tryptic peptide which contained the majority of the 14C incorporated into the beta subunit was isolated and subjected to automatic amino acid sequence analysis contained 38 residues. The amino acid sequence immediately around the lysine residue labeled with [14C]Nbf-, K*, was found to be: ...I-G-L-F-G-G-A-G-V-G-K*-T-V-L-I-G... .  相似文献   

11.
Ellman's reagent 5,5'-dithiobis-(2-nitrobenzoic acid) inhibits sodium- and potassium-stimulated ATPase, p-nitrophenyl phosphatase activity, and [3H]ouabain binding to lamb kidney (Na,K)-ATPase. The inactivation of [3H]ouabain binding follows pseudo-first order reaction kinetics at pH values less than or equal to 8.2. The inactivation of [3H]ouabain binding, but not of enzymatic activity, can be blocked by preincubation with ouabagenin, a rapidly reversible aglycone derivative of ouabain. The reduction in [3H]ouabain binding is due to a decrease in the number of binding sites rather than an alteration of the affinity of the enzyme for ouabain. Differential labeling at pH 8.2 with 1.0 mM 5,5'-dithiobis-(2-nitrobenzoic acid), preincubated with or without 5 microM ouabagenin, followed by tryptic digestion and reverse-phase high performance liquid chromatography of the generated soluble peptides reveals a single peptide labeled by the sulfhydryl probe that is protected by ouabagenin. From these results it is concluded that there is a single sulfhydryl group, essential for ouabain binding, presumably located in the ouabain binding site of lamb kidney (Na,K)-ATPase.  相似文献   

12.
During the inactivation of the nucleotide-free F1-ATPase at pH 7.0, by p-fluorosulfonyl[14C]benzoyl-5'-adenosine ([14C]FSBA) in the presence of 20% glycerol, about 4.5 g atoms of 14C are incorporated/350,000 g of enzyme. Isolation of the subunits has shown: (a) over 90% of the incorporated label is associated with the alpha and beta subunits; (b) the amount of label incorporated into the alpha subunit is about 0.5 g atoms/mol which is nonspecifically associated with a number of tyrosine and lysine residues; (c) the amount of radioactivity incorporated into the beta subunit is about 0.9 g atoms/mol which correlates with the degree of inactivation of the enzyme and resides on a single tyrosine residue; (d) up to 2.2 mol of alpha subunit have been isolated from each mole of inactivated enzyme; and (e) about 2 mol of beta subunit have been isolated from each mole of inactivated enzyme. These results account for the incorporation of 4.5 g atoms of 14C which are incorporated/mol of ATPase during inactivation if there are three copies each of the alpha and beta subunit present in the enzyme. It has also been shown that 4-chloro-7-nitrobenzofurazan (NBD-Cl) and FSBA react with different tyrosine residues when they inactivate the ATPase. In addition, it has been shown that the ATPase inactivated with FSBA retains the capacity to bind up to 2.2 mol of [14C]ADP/350,000 g of enzyme.  相似文献   

13.
R M Katusz  R F Colman 《Biochemistry》1991,30(47):11230-11238
S-(4-Bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, has been synthesized and characterized by UV spectroscopy and thin-layer chromatography, as well as by bromide and primary amine analysis. Incubation of S-BDB-G (200 microM) with the 4-4 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 1000 microM, with a kmax of 0.078 min-1 and K1 = 66 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 1.3 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.48 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, carboxymethylated, and digested with trypsin. The tryptic digest was fractionated by reverse-phase high-performance liquid chromatography. Two radioactive peptides were identified: Lys82-His-Asn-Leu-X-Gly-Glu-Thr-Glu-Glu-Glu-Arg93, in which X is modified Cys86, and Leu109-Gln-Leu-Ala-Met-CmCys-Y-Ser-Pro-Asp-Phe-Glu-Arg121 , in which Y is modified Tyr115. Only the Lys82-Arg93 peptide was modified in the presence of S-hexylglutathione when the enzyme retained full activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The carboxyl group reagents dicyclohexylcarbodiimide (DCCD) and N-ethoxycarboxyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) inactivate the soluble Rhodospirillum rubrum F1-ATPase (RrF1). The inactivation is both time- and concentration-dependent and also pH-dependent, being more marked at acid pH. Under the same conditions, N-ethyl-5-phenylisoxazolium 3'-sulfonate causes almost no inactivation of the RrF1-ATPase. Complete inhibition of the enzyme activity requires the binding of 1 mol of DCCD/mol of RrF1. The isolated, reconstitutively active, beta-subunit of RrF1 is affected by the three carboxyl group reagents in a very similar manner to the RrF1-ATPase. Incubation of the beta-subunit with DCCD and EEDQ eliminates its capacity to rebind to beta-less chromatophores. Consequently the DCCD or EEDQ-modified beta-subunit cannot restore ATP synthesis or hydrolysis activities to the beta-less chromatophores. The interaction of the isolated beta-subunit with DCCD and EEDQ is both time and concentration dependent. The elimination of the reconstitutive activity of the beta-subunit by DCCD is accompanied with a covalent binding of about 1 mol of [14C]DCCD/mol of beta and is pH-dependent, showing a half-maximal effect at about pH 7.4. Divalent cations, inorganic phosphate, and to a lesser extent ATP and ADP decrease the binding stoichiometry of DCCD to the beta-subunit. Pretreatment of either RrF1 or its isolated beta-subunit with EEDQ reduces drastically their ability to bind [14C]DCCD, suggesting that in both RrF1 and the beta-subunit, EEDQ and DCCD might react at the same site. The similar effect of the carboxyl group reagents on RrF1 and on its isolated beta-subunit is in accord with the suggestion that DCCD and EEDQ affect the F1-ATPases by interacting with their beta-subunits.  相似文献   

15.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.  相似文献   

16.
The bovine heart mitochondrial F1-ATPase (MF1) is inactivated by 5'-p'-fluorosulfonylbenzoyl-8-azidoadenosine (8-N3-FSBA) with an apparent Kd of 0.47 mM at pH 8.0 and 23 degrees C in the absence of light. Irradiation of dark-inactivated enzyme with long-wavelength UV light produced cross-linked dimers and, to a lesser extent, trimers made up of alpha and beta subunits. Two major radioactive peptides were resolved by high-performance liquid chromatography from tryptic digests of MF1 which had been inactivated with 8-N3-FSB[3H]A at pH 8.0 in the dark. Sequence analysis revealed that one contained Tyr-beta 368 and the other contained His-beta 427 which were labeled in the ratio of 18:15. Sequence analysis of radioactive tryptic peptides isolated from digests of irradiated MF1 derivatized with 8-N3-FSB[3H]A showed that photolysis induced cross-linking of His-427 to Tyr-345 within the same beta subunit in high yield. When MF1 derivatized with 8-N3-FSB[3H]A was irradiated in the presence of beta-mercaptoethanol, alpha-beta cross-links were eliminated, whereas those between His-beta 427 and Tyr-beta 345 were unaffected. Analysis of radioactive peptides in tryptic digests of MF1 derivatized with 8-N3-FSB[3H]A and then irradiated in the presence or absence of beta-mercaptoethanol showed that the nitrene generated from reagent attached to Tyr-beta 368 participates in formation of alpha-beta cross-links in the absence of beta-mercaptoethanol. Therefore, the nitrene generated from reagent tethered to His-beta 427 is shielded from solvent and reacts with the side chain of Tyr-beta 345. In contrast, the nitrene generated from reagent attached to Tyr-beta 368 is exposed to solvent, but in the absence of scavengers reacts with side chains present in the alpha subunit. Irradiation of MF1, partially inactivated with 8-N3-FSBA, led to loss of residual ATPase activity without affecting residual ITPase activity. The amount of photoinactivation was greater when partial dark inactivation was performed at pH 6.9, where modification of His-beta 427 predominates, than when performed at pH 8.0, where modification of Tyr-beta 368 predominates. This suggests that cross-linking of His-beta 427 to Tyr-beta 345, and not cross-linking of alpha and beta subunits, is responsible for the augmented inactivation induced by irradiation.  相似文献   

17.
The purified tonoplast H+-ATPase from oat roots (Avena sativa L. var. Lang) consists of at least three different polypeptides with masses 72, 60, and 16 kDa. We have used covalent modifiers (inhibitors) and polyclonal antibodies to identify the catalytic subunit of the H+-pumping ATPase. The inactivation of ATPase activity by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (Nbd-Cl, an adenine analog) was protected by MgATP or MgADP, and showed kinetic properties consistent with active site-directed inhibition. Under similar conditions, [14C]Nbd-Cl preferentially labeled the 72-kDa polypeptide of the purified ATPase. This binding was reduced by MgATP or 2' (3')-)O-(2,4,6-trinitrophenyl) ATP. Nbd-Cl probably modified cysteinyl--SH or tyrosyl--OH groups, as dithiothreitol reversed both ATPase inactivation and [14C]Nbd-Cl binding to the 72-kDa subunit. The finding that N-ethylmaleimide inhibition of ATPase activity was protectable by nucleotides is consistent with the idea of sulfhydryl groups in the ATP-binding site. Polyclonal antibody made to the 72-kDa polypeptide specifically reacted (Western blot) with a 72-kDa polypeptide from both tonoplast-enriched membranes and the purified tonoplast ATPase, but it did not cross-react with the mitochondrial or Escherichia coli F1-ATPase. The antibody inhibited tonoplast ATPase and H+-pumping activities. We conclude from these results that the 72-kDa polypeptide of the tonoplast H+-ATPase contains an ATP- (or nucleotide-) binding site that may constitute the catalytic domain.  相似文献   

18.
The modification of both beta-Tyr-368 and beta-His-427 can be correlated with the loss of activity observed when the bovine mitochondrial F1-ATPase is inactivated with 5'-p-fluorosulfonylbenzoyl[3H]adenosine ([3H]FSBA). At pH 8.0, where the rate of inactivation is fast, beta-Tyr-368 is modified predominantly, while at pH 6.0, where the rate of inactivation is slow, beta-His-427 is modified predominantly. At pH 7.0, the 2 residues are modified with about equal efficiency. When the F1-ATPase was inactivated by 80% at pH 6.5, 7.0, and 7.5, the sum of radioactivity incorporated into beta-Tyr-368 and beta-His-427 was 1.99, 1.87, and 1.82 mol of label incorporated per mol of enzyme, respectively. Examination of the rate of inactivation of the enzyme by FSBA as a function of pH revealed two pKa values, one of about 7.6 associated with the modification of beta-Tyr-368 and the other of about 5.8 associated with the modification of beta-His-427. The inactivation of the F1-ATPase by FSBA exhibited an initial fast rate followed by a slower rate in triethanolamine-HCl, pH 7.0. In contrast, only a single rate, equivalent to the fast phase of inactivation in the absence of phosphate, was observed in 0.2 M phosphate, pH 7.0. The dependence of this stimulation on phosphate concentration is sigmoidal with half-maximal stimulation occurring at approximately 160 mM. The ratio of 3H incorporated into beta-Tyr-368 to that incorporated into beta-His-427 was approximately the same during the fast and slow phases of inactivation in triethanolamine-HCl, pH 7.0. Approximately the same ratio was observed when the enzyme was modified during the single phase of inactivation exhibited in the presence of 0.2 M phosphate, pH 7.0. The sum of the 3H incorporated into beta-Tyr-368 and beta-His-427 during inactivation of the F1-ATPase from bovine heart mitochondria by [3H]FSBA in the presence and absence of phosphate was linear and extrapolated to a value of about 2.6 residues modified on complete inactivation of the enzyme. From these data, it is concluded that FSBA binds to a single binding site on the beta subunits of the enzyme where it reacts with either beta-Tyr-368 or beta-His-427 in mutually exclusive reactions. All three beta subunits must be modified in this manner for complete inactivation to be observed.  相似文献   

19.
Subunit structure of the lysosomal H+-ATPase was investigated using cold inactivation, immunological cross-reactivity with antibodies against individual subunits of the H+-ATPase from chromaffin granules and chemical modification with N,N'-dicyclohexyl[14C]carbodiimide. The lysosomal H+-ATPase was irreversibly inhibited when incubated at 0 degrees C in the presence of chloride or nitrate and MgATP. Inactivation in the cold resulted in the release of several polypeptides (72, 57, 41, 34 and 33 kDa) from the membrane, which had the same electrophoretic mobility as the corresponding subunits of chromaffin granule H+-ATPase. Cross-reactivity of antibodies revealed that the 72, 57 and 34 kDa polypeptides were immunologically identical to the corresponding subunits of chromaffin granule H+-ATPase. Dicyclohexylcarbodiimide, which inhibits proton translocation in the vacuolar ATPase, predominantly labeled two polypeptides of 18 and 15 kDa, which compose the membrane sector of the enzyme. These results suggest that the lysosomal H+-ATPase is a multimeric enzyme, whose subunit structure is similar to the chromaffin granule H+-ATPase. The subunit structure of other vacuolar H+-ATPases, revealed by cold inactivation and immunological cross-reactivity, is also presented.  相似文献   

20.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号