首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

2.
Retention of nutrients in river basins   总被引:1,自引:0,他引:1  
In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha–1 and 0.63 kg P ha–1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export.Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m–2 yr–1 and 3.7–8.3 g P m–2 yr–1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m–2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr–1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr–1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m–2 yr–1 and 0.30 g P m–2 yr–1, respectively, during the period 1989–1995.The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr–1 and that P-retention increased from –0.80 to 0.90 tonnes yr–1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.  相似文献   

3.
Summary Nitrogen mineralization, nitrification, denitrification, and microbial biomass were evaluated in four representative ecosystems in east-central Minnesota. The study ecosystems included: old field, swamp forest, savanna, and upland pin oak forest. Due to a high regional water table and permeable soils, the upland and wetland ecosystems were separated by relatively short distances (2 to 5 m). Two randomly selected sites within each ecosystem were sampled for an entire growing season. Soil samples were collected at 5-week intervals to determine rates of N cycling processes and changes in microbial biomass. Mean daily N mineralization rates during five-week in situ soil incubations were significantly different among sampling dates and ecosystems. The highest annual rates were measured in the upland pin oak ecosystem (8.6 g N m–2 yr–1), and the lowest rates in the swamp forest (1.5 g N m–2 yr–1); nitrification followed an identical pattern. Denitrification was relatively high in the swamp forest during early spring (8040 g N2O–N m–2 d–1) and late autumn (2525 g N2O–N m–2 d–1); nitrification occurred at rates sufficient to sustain these losses. In the well-drained uplands, rates of denitrification were generally lower and equivalent to rates of atmospheric N inputs. Microbial C and N were consistently higher in the swamp forest than in the other ecosystems; both were positively correlated with average daily rates of N mineralization. In the subtle landscape of east-central Minnesota, rates of N cycling can differ by an order of magnitude across relatively short distances.  相似文献   

4.
Net N mineralization rates were measured in heathlands still dominated by ericaceous dwarf shrubs (Calluna vulgaris or Erica tetralix) and in heathlands that have become dominated by grasses (Molinia caerulea or Deschampsia flexuosa). Net N mineralization was measuredin situ by sequential soil incubations during the year. In the wet area (gravimetric soil moisture content 74–130%), the net N mineralization rates were 4.4 g N m–2 yr–1 in the Erica soil and 7.8 g N m–2 yr–1 in the Molinia soil. The net nitrification rate was negligibly slow in either soil. In the dry area (gravimetric soil moisture content 7–38%), net N mineralization rates were 6.2 g N M-2 yr–1 in the Calluna soil, 10.9 g N m–2 yr–1 in the Molinia soil and 12.6 g N m–2 yr–1 in the Deschampsia soil. The Calluna soil was consistently drier throughout the year, which may partly explain its slower mineralization rate. Net nitrification was 0.3 g N m–2 yr–1 in the Calluna soil, 3.6 g N m–2 yr–1 in the Molinia soil and 5.4 g N m–2 yr–1 in the Deschampsia soil. The net nitrification rate increased proportionally with the net N mineralization rate suggesting ammonium availability may control nitrification rates in these soils. In the dry area, the faster net N mineralization rates in sites dominated by grasses than in the site dominated by Calluna may be explained by the greater amounts of organic N in the soil of sites dominated by grasses. In both areas, however, the net amount of N mineralized per gram total soil N was greater in sites dominated by Molinia or Deschampsia than in sites dominated by Calluna or Erica. This suggests that in heathlands invaded by grasses the quality of the soil organic matter may be increased resulting in more rapid rates of soil N cycling.  相似文献   

5.
Seasonal variation in denitrification and major factors controlling this process were determined in sediment, microbial communities attached to plant shoots (periphyton) and in the water of a Phragmites and an Elodea-dominated stand of a constructed wetland system between May 1997 and February 1998. The wetland was supplied with effluent from a sewage treatment plant. The denitrification rate in periphyton on plants shoots (expressed per shoot area) was always considerably higher than in the sediment and varied with the chlorophyll-a content of the periphyton in the course of the year. The algae in the periphyton provided attachment surfaces and probably also organic compounds to the denitrifying bacteria. Decreases in periphyton biomass and denitrification rate in the Phragmites and Elodea-dominated stands during the growing season were associated with enhanced shading by Phragmites shoots or a floating layer of macro-algae and Lemna spp., respectively. Light availability and the denitrification rate of periphyton increased again after the Phragmites shoots were cut in October. Nitrate appeared to limit the denitrification rate in the sediment. Periphyton denitrification rates were mostly lower on Elodea shoots than on Phragmites shoots, in spite of the higher living algal biomass on Elodea shoots. This difference was associated with lower nitrate concentrations in the Elodea-dominated stand. In the two stands, the daily denitrification rates in periphyton on shoots of Phragmites australis (44.4–121 mg N m–2 stand area d–1) and Elodea nuttallii (14.8–33.1 mg N m–2 d–1) were clearly more important than rates in the sediment (0.5–25.5 mg N m–2 d–1) or the water (0.4–3.9 mg N m–2 d–1). The presence of few bacteria attachment sites or low organic carbon availability possibly resulted in low denitrification rates in the water. Denitrification appeared to be a major process in nitrate removal from the through-flowing water in this wetland system.  相似文献   

6.
Denitrification is a major mechanism for nitrogen removal from nitrogen-rich waters, but it requires oxygen-poor conditions. We assessed denitrification rates in nitrate-rich but also oxygen-rich river water during its stay in a floodplain. We measured diurnal oxygen fluctuations in floodwater along the river Rhine, and carried out an experiment to assess denitrification rates during day, evening and night. Denitrification in floodwater and flooded sediment were measured, comparing activity of periphyton and sediment from agricultural grasslands and reedbeds. Floodwater along the river Rhine was oxygen-saturated (> 10 mg O2/L) during the day, but oxygen largely disappeared during the night (0.4–0.8 mg O2/L). Independent of oxygen concentrations, denitrification in surface water alone hardly occurred. In flooded sediments, however, denitrification rates were much higher (1.1–1.5 mg N m–2 h–1), particularly at dark and oxygen-poor conditions (nighttime). In the experimental jars, reedbed-periphyton bacteria achieved similar denitrification rates as bacteria in sediment, but overall periphyton denitrification was of minor importance when calculated per square meter. Apart from oxygen levels, maximum denitrification appeared to be regulated by nitrate diffusion from water into the sediment, as the maximum quantity of N denitrified in the sediment equalled the quantity of N lossed from the surface water. Assessed 24-hr denitrification rates in the flooded floodplains (c. 15 mg N m–2 d–1) were similar in grasslands and reedbeds, and were rather low compared to rates in other floodplains.  相似文献   

7.
The biogeochemistry of nitrogen in freshwater wetlands   总被引:19,自引:7,他引:12  
The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (< 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (< < 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments.Plant uptake normally ranges from a few g N m-2 yr-1 to 35 g N m-2 yr-1 with extreme values of up to 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate.The NO3 formed by nitrification (< 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated.In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.  相似文献   

8.
Whole-system denitrification in the South Platte River was measured over a 13-month period using an open-channel N2 method and mass-balance measurements. Concentrations of dissolved N2 were measured with high precision by membrane-inlet mass spectrometry and estimates of denitrification were based on the mass flux of N2, after correction for reaeration and groundwater flux. Open-channel estimates of denitrification ranged from 0 to 3.08 g N m–2 d–1 and the mean annual rate was 1.62 g N m–2 d–1, which corresponds to removal of approximately 34% of the nitrate transported by the river over a distance of 18.5 km. Over the same period of time, estimates of denitrification based on mass-balance measurements ranged from 0.29 to 5.25 g N m–2 d–1 and the mean annual rate was 2.11 g N m–2 d–1. The two methods revealed similar seasonal patterns of denitrification the highest rates were measured from late April to August and the lowest rates were in winter. Both methods provide whole-system estimates of denitrification in running waters; where reaeration rate coefficients are low and flux of groundwater is well quantified, the open-channel method has fewer sources of uncertainty and is easier to implement.  相似文献   

9.
A comparative study was undertaken of the fate of fine sediment in the Ngerikiil and Ngerdorch mangrove-fringed estuaries in Babeldaob Island, Palau, Micronesia, in 2002. The mangroves comprised 3.8% of each catchment area, and in both systems, they trapped about 30% of the riverine sediment. Mangroves are important buffers protecting fringing coral reefs from excessive sedimentation. The sediment yield was significantly higher in the Ngerikiil River catchment (150 tons km–2 yr–1) that has been extensively cleared and farmed, than in Ngerdorch River catchment (1.9 tons km–2 yr–1) that was still relatively pristine during the study period.This revised version wa published online in March 2005 with corrections to the issue cover date.  相似文献   

10.
We compared the mechanisms of nitrogen (N) and phosphorus (P) removal in four young (<15 years old) constructed estuarine marshes with paired mature natural marshes to determine how nutrient retention changes during wetland ecosystem succession. In constructed wetlands, N retention begins as soon as emergent vegetation becomes established and soil organic matter starts to accumulate, which is usually within the first 1–3 years. Accumulation of organic carbon in the soil sets the stage for denitrification which, after 5–10 years, removes approximately the same amount of N as accumulating organic matter, 5–10 g/m2/yr each, under conditions of low N loadings. Under high N loadings, the amount of N stored in accumulating organic matter doubles while N removal from denitrification may increase by an order of magnitude or more. Both organic N accumulation and denitrification provide for long-term reliable N removal regardless of N loading rates. Phosphorus removal, on the other hand, is greatest during the first 1–3 years of succession when sediment deposition and sorption/precipitation of P are greatest. During this time, constructed marshes may retain from 3 g P/m2/yr under low P loadings to as much as 30 g P/m2/yr under high loadings. However, as sedimentation decreases and sorption sites become saturated, P retention decreases to levels supported by organic P accumulation (1–2 g P/m2/yr) and sorption/precipitation with incoming aqueous and particulate Fe, Al and Ca. Phosphorus cycling in wetlands differs from forest and other terrestrial ecosystems in that conservation of P is greatest during the early years of succession, not during the middle or late stages. Conservation of P by wetlands is largely regulated by geochemical processes (sorption, precipitation) which operate independently of succession. In contrast, the conservation of N is controlled by biological processes (organic matter accumulation, denitrification) that change as succession proceeds.  相似文献   

11.
Large increases in nitrogen (N) inputs to terrestrial ecosystems typically have small effects on immediate N outputs because most N is sequestered in soil organic matter. We hypothesized that soil organic N storage and the asynchrony between N inputs and outputs result from rapid accumulation of N in stable soil organic pools. We used a successional sequence on floodplains of the Tanana River near Fairbanks, Alaska to assess rates of stable N accumulation in soils ranging from 1 to 500+ years old. One-year laboratory incubations with repeated leaching separated total soil N into labile (defined as inorganic N leached) and stable (defined as total minus labile N) pools. Stable N pools increased faster (2 g N m–2 yr–1) than labile N (0.4 g N m–2 yr–1) pools during the first 50 years of primary succession; labile N then plateaued while stable and total N continued to increase. Soil C pools showed similar trends, and stable N was correlated with stable C (r2 = 0.95). From 84 to 95 % of soil N was stable during our incubations. Over successional time, the labile N pool declined as a proportion of total N, but remained large on an aerial basis (up to 38 g N m–2). The stoichiometry of stable soil N changed over successional time; C:N ratios increased from 10 to 22 over 275 years (r2 = 0.69). A laboratory 15N addition experiment showed that soils had the capacity to retain much more N than accumulated naturally during succession. Our results suggest that most soil N is retained in a stable organic pool that can accumulate rapidly but is not readily accessible to microbial mineralization. Because stable soil organic matter and total ecosystem organic matter have flexible stoichiometry, net ecosystem production may be a poor predictor of N retention on annual time scales.  相似文献   

12.
Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M–2 day–1 and 100–200 mg P m–1 day–1. Average external loading during this period was about 350 mg N m–2 day–1 and 5 mg P m–2 day–1, respectively.Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m–2 day–1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.  相似文献   

13.
Denitrification and N2O emission from urine-affected grassland soil   总被引:1,自引:0,他引:1  
Denitrification and N2O emission rates were measured following two applications of artificial urine (40 g urine-N m–2) to a perennial rye-grass sward on sandy soil. To distinguish between N2O emission from denitrification or nitrification, urine was also applied with a nitrification inhibitor (dicyandiamide, DCD). During a 14 day period following each application, the soil was frequently sampled, and incubated with and without acetylene to measure denitrification and N2O emission rates, respectively.Urine application significantly increased denitrification and N2O emission rates up to 14 days after application, with rates amounting to 0.9 and 0.6 g N m–2 day–1 (9 and 6 kg N ha–1 day–1), respectively. When DCD was added to the urine, N2O emission rates were significantly lower from 3 to 7 days after urine application onwards. Denitrification was the main source of N2O immediately following each urine application. 14 days after the first application, when soil water contents dropped to 15% (v/v) N2O mainly derived from nitrification.Total denitrification losses during the 14 day periods were 7 g N m–2, or 18% of the urine-N applied. Total N2O emission losses were 6.5 and 3 g N m–2, or 16% and 8% of the urine-N applied for the two periods. The minimum estimations of denitrification and N2O emission losses from urine-affected soil were 45 to 55 kg N ha–1 year–1, and 20 to 50 kg N ha–1 year–1, respectively.  相似文献   

14.
Estimating denitrification in North Atlantic continental shelf sediments   总被引:17,自引:3,他引:14  
A model of coupled nitrification/denitrification was developed for continental shelf sediments to estimate the spatial distribution of denitrification throughout shelf regions in the North Atlantic basin. Using data from a wide range of continental shelf regions, we found a linear relationship between denitrification and sediment oxygen uptake. This relationship was applied to specific continental shelf regions by combining it with a second regression relating sediment oxygen uptake to primary production in the overlying water. The combined equation was: denitrification (mmol N m–2 d–1)=0.019* phytoplankton production (mmol C m–2 d–1). This relationship suggests that approximately 13% of the N incorporated into phytoplankton in shelf waters is eventually denitrified in the sediments via coupled nitrification/denitrification, assuming a C:N ratio of 6.625:1 for phytoplankton. The model calculated denitrification rates compare favorably with rates reported for several shelf regions in the North Atlantic.The model-predicted average denitrification rate for continental shelf sediments in the North Atlantic Basin is 0.69 mmol N m– 2 d–1. Denitrification rates (per unit area) predicted by the model are highest for the continental shelf region in the western North Atlantic between Cape Hatteras and South Florida and lowest for Hudson Bay, the Baffin Island region, and Greenland. Within latitudinal belts, average denitrification rates were lowest in the high latitudes, intermediate in the tropics and highest in the mid-latitudes. Although denitrification rates per unit area are lowest in the high latitudes, the total N removal by denitrification (53 × 1010 mol N y–1) is similar to that in the mid-latitudes (60 × 1010 mol N y–1) due to the large area of continental shelf in the high latitudes. The Gulf of St. Lawrence/Grand Banks area and the North Sea are responsible for seventy-five percent of the denitrification in the high latitude region. N removal by denitrification in the western North Atlantic (96 × 1010 mol N y–1) is two times greater than in the eastern North Atlantic (47 × 1010 mol N y–1). This is primarily due to differences in the area of continental shelf in the two regions, as the average denitrification rate per unit area is similar in the western and eastern North Atlantic.We calculate that a total of 143 × 1010 mol N y–1 is removed via coupled nitrification/denitrification on the North Atlantic continental shelf. This estimate is expected to underestimate total sediment denitrification because it does not include direct denitrification of nitrate from the overlying water. The rate of coupled nitrification/denitrification calculated is greater than the nitrogen inputs from atmospheric deposition and river sources combined, and suggests that onwelling of nutrient rich slope water is a major source of N for denitrification in shelf regions. For the two regions where N inputs to a shelf region from onwelling have been measured, onwelling appears to be able to balance the denitrification loss.  相似文献   

15.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

16.
Caesium-137 and lead-210 dating of recent sediments from Mondsee (Austria)   总被引:1,自引:1,他引:0  
Mean annual sedimentation rates over the last 20–30 years were determined in the pre-alpine Mondsee (Upper Austria) using Cs-137 and Pb(Po)-210 profiles for sediment core dating and two natural sediment markers. Lower sedimentation rates of about 2–3 mm yr–1 were observed in the central part of the lake near the shore at 18–20 m and in the southern part at 30 m depth. Higher sedimentation rates of 4–7 mm yr–1 were found in the central part of the lake at 47 and 65 m and in the northern bay at 18 and 41 m depth. At both these sites the Pb-210 profiles were strongly disturbed in the upper zone of the sediment cores, whereas the Cs-137 pattern remained intact. The higher annual sediment accumulation rates can be explained only partly by deposition of allochthonous material discharged by the streams, enhanced eutrophication in these parts of the lake, erosion and sediment focusing by turbidity currents being also probable.  相似文献   

17.
Nitrogen flux data was synthesized in developing a nitrogen flow budget for a Louisiana Barataria BasinSpartina alterniflora salt marsh. Results demonstrate the importance of spatial consideration in developing a nitrogen budget for coastal marshes. Using a mass balance approach nitrogen inputs balanced nitrogen sinks or losses from a marsh soil-plant system with a specific rooting depth. However, per unit areas on a local scale, marshes serve as a large sink for nitrogen due to rapid accretion which removes 17.O g N m–2yr–1 through subsidence below the root zone. On a larger spatial scale (regional) it is shown that the marshes do not serve as a large nitrogen sink. The rapid marsh deterioration currently occurring in the rapidly subsiding marshes of the Mississippi River deltaic plain account for a net regional loss of 12.5 g N m–2yr–1. Thus, regionally the net sink is equivalent to only 5 g N m–2yr–1 as compared to 17.0 g N m–2yr–1 on a local scale.  相似文献   

18.
Bloesch  J.  Evans  R. D. 《Hydrobiologia》1982,91(1):579-586
Methods to provide accurate accumulation rates for lake models are discussed. Cores were taken in 1979 in two basins of Lake Lucerne, Switzerland, and accumulation rates were calculated by using Pb-210 dating and by a natural landslide marker of 1795 in one basin (Weggis). In the other basin (Horw Bay) the sediment accumulation rates based on the lead method were compared with yearly sedimentation rates measured by sediment traps in 1969/70. At the Weggis station, the core dating yielded sediment accumulation rates of about 400 g dry wt. m–2 y–1 with the lead method, averaged over a sediment depth of 4–20 cm; accumulation was about 700 g dry wt. m–2 y–1 with the marker method, averaged over 0–33 cm. In Horw Bay, the trap method yielded about 1300 g dry wt. M–2 y–1 compared with 400–1000 g dry wt. m–2 y–1 obtained with the lead method and related to various depth intervals. The characteristic sources of error of the three methods as well as several hypotheses for these discrepancies are discussed.  相似文献   

19.
Denitrification was directly estimated in estuarine sediments of Waquoit Bay, Cape Cod, MA by detection of N2 increases above ambient in the water overlying sediment cores. Denitrification rates (–9 to 712 mol N2 m–2 h–1 ) were high compared to previous studies, but compared well with estimates of N loss from mass balance studies. The precision of the estimate depended on the N2/02 flux ratio. The N2/02 flux ratio was lower in Waquoit Bay than previously studied estuaries, and estuaries had lower N2/02 flux ratios than shelf sites. The contribution of temperature-driven solubility changes to estuarine fluxes was estimated by modeling sediment temperature variations and found to be potentially important (43 mol N2 m–2 h–1); however, control incubations indicate the temperature model overestimates solubility driven fluxes. The relatively low fluxes under anaerobic conditions and the low rate of N03 /N02 removal from the overlying water indicates coupled nitrification/denitrification produced the observed N2 fluxes.  相似文献   

20.
Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of CO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those based on CO2 pore-water gradients using Fick's First law indicates that apparent diffusion coefficients are 2 to 28 times higher than bulk sediment diffusion coefficients based on molecular diffusion. Seasonal changes in gaseous carbon fluxes or CO2 pore water concentrations cannot be used directly, or in a simple way, to determine seasonal rates of mineralization, because of marked seasonal changes in pore-water storage and exchange parameters.The annual amount of carbon delivered to the sediment is 42 mol m–2, of which about 42% becomes buried, the remaining being emitted as methane (7%) or carbon dioxide (50%). Each year about 2.6 mol N m–2 of particulate nitrogen reaches the sediment; 1.1 mol m–2 is buried and 1.6 mol m–2 is mineralized to ammonium. Only 0.42 mol m–2 yr–1 of the ammonium produced escapes from the sediments, the remaining being first nitrified (1.2 mol m–2 yr–1) and then denitrified (1.7 mol m–2 yr–1). Simple calculations indicate that intertidal sediments may account for about 14% and 30% of the total estuarine retention of nitrogen and carbon, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号