首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The p6 domain of human immunodeficiency virus type 1 (HIV-1) Gag has long been known to be monoubiquitinated. We have previously shown that the MA, CA, and NC domains are also monoubiquitinated at low levels (E. Gottwein and H. G. Krausslich, J. Virol. 79:9134-9144, 2005). While several lines of evidence support a role for ubiquitin in virus release, the relevance of Gag ubiquitination is unclear. To directly address the function of Gag ubiquitination, we constructed Gag variants in which lysine residues in the NC, SP2, and p6 domains were mutated to arginine either in individual domains or in combination. Using these mutants, we showed that in addition to MA, CA, NC, and p6, SP2 is also mono- or di-ubiquitinated at levels comparable to those of the other domains. Replacement of all lysine residues in only one of the domains had minor effects on virus release, while cumulative mutations in NC and SP2 or in NC and p6 resulted in an accumulation of late budding structures, as observed by electron microscopy analysis. Strikingly, replacement of all lysine residues downstream of CA led to a significant reduction in virus release kinetics and a fivefold accumulation of late viral budding structures compared to wild-type levels. These results indicate that ubiquitination of lysine residues in Gag in the vicinity of the viral late domain is important for HIV-1 budding, while no specific lysine residue may be needed and individual domains can functionally substitute. This is consistent with Gag ubiquitination being functionally involved in a transient protein interaction network at the virus budding site.  相似文献   

2.
Ubiquitin is important for the release of human immunodeficiency virus 1 (HIV-1) and several other retroviruses. All major domains of the HIV-1 Gag protein are monoubiquitinated, but the modifying machinery and the function of HIV-1 Gag ubiquitination remain unclear. Here, we show that the induction of a late budding arrest by mutation of the HIV-1 PTAP motif or by specific inhibition of selected ESCRT components leads to an increase of Gag-ubiquitin conjugates in cells, which coincides with an accumulation of detergent-insoluble, multimerized Gag at the plasma membrane. Membrane flotation experiments revealed that ubiquitinated Gag is highly enriched in membrane-bound fractions. Based on these findings, we propose that a blocking of virus release results in increased Gag ubiquitination as a consequence of its prolonged membrane association. Consistent with this, ubiquitination of a membrane-binding-defective (G2A)Gag mutant was dramatically reduced and the ubiquitination levels of truncated Gag proteins correlated with their abilities to bind to membranes. We therefore propose that membrane association and multimerization of HIV-1 Gag proteins, rather than a specific motif within Gag, trigger recognition by the cellular ubiquitination machinery.  相似文献   

3.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind the cellular proteins Tsg101 and Alix, respectively. These interactions are thought to recruit members of the host fission machinery (ESCRT) to facilitate HIV-1 release. Here we report a new role for the p6-adjacent nucleocapsid (NC) domain in HIV-1 release. The mutation of basic residues in NC caused a pronounced decrease in virus release from 293T cells, although NC mutant Gag proteins retained the ability to interact with cellular membranes and RNAs. Remarkably, electron microscopy analyses of these mutants revealed arrested budding particles at the plasma membrane, analogous to those seen following the disruption of the PTAP motif. This result indicated that the basic residues in NC are important for virus budding. When analyzed in physiologically more relevant T-cell lines (Jurkat and CEM), NC mutant viruses remained tethered to the plasma membrane or to each other by a membranous stalk, suggesting membrane fission impairment. Remarkably, NC mutant release defects were alleviated by the coexpression of a Gag protein carrying a wild-type (WT) NC domain but devoid of all L domain motifs and by providing alternative access to the ESCRT pathway, through the in trans expression of the ubiquitin ligase Nedd4.2s. Since NC mutant Gag proteins retained the interaction with Tsg101, we concluded that NC mutant budding arrests might have resulted from the inability of Gag to recruit or utilize members of the host ESCRT machinery that act downstream of Tsg101. Together, these data support a model in which NC plays a critical role in HIV-1 budding.  相似文献   

4.
Endogenous peptides presented by MHC class I (MHC-I) molecules are mostly derived from de novo synthesized, erroneous proteins, so-called defective ribosomal products (DRiPs), which are rapidly degraded via the ubiquitin-proteasome pathway. We have previously shown that the HIV-1 Gag protein represents a bona fide substrate for the DRiP pathway and that the amount of Gag-DRiPs can be enhanced by the introduction of an N-end rule degradation signal, leading to increased MHC-I presentation and immunogenicity of Gag. Based on these findings, we sought to identify a naturally occurring sequence motif within Gag that regulates its entry into the DRiP pathway. As the PTAP late assembly domain motif in the C-terminal p6 domain of Gag has been shown to negatively regulate the ubiquitination of Gag, we analyzed the correlation between ubiquitination and MHC-I presentation of PTAP-deficient Gag. Intriguingly, mutation of PTAP not only reduces the release of virus-like particles, but also increases ubiquitination of Gag and, consistently, enhances MHC-I presentation of a Gag-derived epitope. Although the half-life of the PTAP mutant was only mildly reduced, the entry into the DRiP pathway was significantly increased, as demonstrated by short-term pulse-chase analyses under proteasome inhibition. Collectively, these results indicate that, besides driving virus release, the PTAP motif regulates the entry of Gag into the DRiP pathway and, thus, into the MHC-I pathway. Although there are no naturally occurring PTAP mutants of HIV-1, mutations of PTAP might enhance the immunogenicity of Gag and, thus, be considered for the improvement of vaccine development.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses harbor short peptide motifs in Gag that promote the release of infectious virions. These motifs, known as late assembly (L) domains, recruit a cellular budding machinery that is required for the formation of multivesicular bodies (MVBs). The primary L domain of HIV-1 maps to a PTAP motif in the p6 region of Gag and engages the MVB pathway by binding to Tsg101. Additionally, HIV-1 p6 harbors an auxiliary L domain that binds to the V domain of ALIX, another component of the MVB pathway. We now show that ALIX also binds to the nucleocapsid (NC) domain of HIV-1 Gag and that ALIX and its isolated Bro1 domain can be specifically packaged into viral particles via NC. The interaction with ALIX depended on the zinc fingers of NC, which mediate the specific packaging of genomic viral RNA, but was not disrupted by nuclease treatment. We also observed that HIV-1 zinc finger mutants were defective for particle production and exhibited a similar defect in Gag processing as a PTAP deletion mutant. The effects of the zinc finger and PTAP mutations were not additive, suggesting a functional relationship between NC and p6. However, in contrast to the PTAP deletion mutant, the double mutants could not be rescued by overexpressing ALIX, further supporting the notion that NC plays a role in virus release.  相似文献   

6.
The retroviral structural protein, Gag, contains small peptide motifs known as late domains that promote efficient virus release from the infected cell. In addition to the well characterized PTAP late domain, the p6 region of HIV-1 Gag contains a binding site for the host cell protein Alix. To better understand the functional role of the Gag/Alix interaction, we overexpressed an Alix fragment composed of residues 364-716 (Alix 364-716) and examined the effect on release of wild type (WT) and Alix binding site mutant HIV-1. We observed that Alix 364-716 expression significantly inhibited WT virus release and Gag processing and that mutation of the Alix binding site largely relieved this inhibition. Furthermore, Alix 364-716 expression induced a severe defect on WT but not mutant particle morphology. Intriguingly, the impact of Alix 364-716 expression on HIV-1 release and Gag processing was markedly different from that induced by mutation of the Alix binding site in p6. The association of Alix 364-716 with HIV-1 and equine infectious anemia virus late domains was quantitatively evaluated by isothermal titration calorimetry and surface plasmon resonance techniques, and the effects of mutations in these viral sequences on Alix 364-716 binding was determined. This study identifies a novel Alix-derived dominant negative inhibitor of HIV-1 release and Gag processing and provides quantitative information on the interaction between Alix and viral late domains.  相似文献   

7.
Retrovirus budding is greatly stimulated by the presence of Gag sequences known as late or L domains. The L domain of human immunodeficiency virus type 1 (HIV-1) maps to a highly conserved Pro-Thr-Ala-Pro (PTAP) sequence in the p6 domain of Gag. We and others recently observed that the p6 PTAP motif interacts with the cellular endosomal sorting protein TSG101. Consistent with a role for TSG101 in virus release, we demonstrated that overexpressing the N-terminal, Gag-binding domain of TSG101 (TSG-5') suppresses HIV-1 budding by blocking L domain function. To elucidate the role of TSG101 in HIV-1 budding, we evaluated the significance of the binding between Gag and TSG-5' on the inhibition of HIV-1 release. We observed that a mutation in TSG-5' that disrupts the Gag/TSG101 interaction suppresses the ability of TSG-5' to inhibit HIV-1 release. We also determined the effect of overexpressing a panel of truncated TSG101 derivatives and full-length TSG101 (TSG-F) on virus budding. Overexpressing TSG-F inhibits HIV-1 budding; however, the effect of TSG-F on virus release does not require Gag binding. Furthermore, overexpression of the C-terminal portion of TSG101 (TSG-3') potently inhibits budding of not only HIV-1 but also murine leukemia virus. Confocal microscopy data indicate that TSG-F and TSG-3' overexpression induces an aberrant endosome phenotype; this defect is dependent upon the C-terminal, Vps-28-binding domain of TSG101. We propose that TSG-5' suppresses HIV-1 release by binding PTAP and blocking HIV-1 L domain function, whereas overexpressing TSG-F or TSG-3' globally inhibits virus release by disrupting the cellular endosomal sorting machinery. These results highlight the importance of TSG101 and the endosomal sorting pathway in virus budding and suggest that inhibitors can be developed that, like TSG-5', target HIV-1 without disrupting endosomal sorting.  相似文献   

8.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

9.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.  相似文献   

10.
The bovine immunodeficiency virus (BIV) gag gene encodes a 53-kDa precursor (Pr53gag) that is involved in virus particle assembly and is further processed into the putative matrix (MA), capsid (CA), and nucleocapsid (NC) functional domains in the mature virus. Gag determinants are also found in the Gag-Pol polyprotein precursor. To immunologically identify the major precursors and processed products of the BIV gag gene, monospecific rabbit sera to recombinant BIV MA protein and Pr53gag and peptides predicted to correspond to the CA and NC proteins and the MA-CA cleavage site were developed and used in immunoprecipitations and immunoblots of BIV antigens. Monospecific antisera to native and recombinant human immunodeficiency virus type 1 proteins were also used to identify analogous BIV Gag proteins and to determine whether cross-reactive epitopes were present in the BIV Gag precursors or processed products. The BIV MA, CA, and NC Gag proteins were identified as p16, p26, and p13, respectively. In addition to BIV Pr53gag, the major Gag precursor, two other Gag-related precursors of 170 and 49 kDa were identified that have been designated pPr170gag-pol and Pr49gag, respectively; pPr170gag-pol is the Gag-Pol polyprotein precursor, and Pr49gag is the transframe Gag precursor present in pPr170gag-pol. Several alternative Gag cleavage products were also observed, including p23, which contains CA and NC determinants, and p10, which contains a peptide sequence conserved in the CA proteins of most lentiviruses. The monospecific antisera to human immunodeficiency virus type 1 CA (p24) and NC (p7) proteins showed cross-reactivity to and aided in the identification of analogous BIV proteins. Based on the present data, a scheme for the processing of BIV Gag precursors is proposed.  相似文献   

11.
We recently reported that human immunodeficiency virus type 1 (HIV-1) carrying PTAP and LYPX(n)L L domains ceased budding when the nucleocapsid (NC) domain was mutated, suggesting a role for NC in HIV-1 release. Here we investigated whether NC involvement in virus release is a property specific to HIV-1 or a general requirement of retroviruses. Specifically, we examined a possible role for NC in the budding of retroviruses relying on divergent L domains and structurally homologous NC domains that harbor diverse protein sequences. We found that NC is critical for the release of viruses utilizing the PTAP motif whether it functions within its native Gag in simian immunodeficiency virus cpzGAB2 (SIVcpzGAB2) or SIVsmmE543 or when it is transplanted into the heterologous Gag protein of equine infectious anemia virus (EIAV). In both cases, virus release was severely diminished even though NC mutant Gag proteins retained the ability to assemble spherical particles. Moreover, budding-defective NC mutants, which displayed particles tethered to the plasma membrane, were triggered to release virus when access to the cell endocytic sorting complex required for transport pathway was restored (i.e., in trans expression of Nedd4.2s). We also examined the role of NC in the budding of EIAV, a retrovirus relying exclusively on the (L)YPX(n)L-type L domain. We found that EIAV late budding defects were rescued by overexpression of the isolated Alix Bro1 domain (Bro1). Bro1-mediated rescue of EIAV release required the wild-type NC. EIAV NC mutants lost interactions with Bro1 and failed to produce viruses despite retaining the ability to self-assemble. Together, our studies establish a role for NC in the budding of retroviruses harboring divergent L domains and evolutionarily diverse NC sequences, suggesting the utilization of a common conserved mechanism and/or cellular factor rather than a specific motif.  相似文献   

12.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

13.
The major structural elements of retroviruses are contained in a single polyprotein, Gag, which in human immunodeficiency virus type 1 (HIV-1) comprises the MA, CA, spacer peptide 1 (SP1), NC, SP2, and p6 polypeptides. In the immature HIV-1 virion, the domains of Gag are arranged radially with the N-terminal MA domain at the membrane and C-terminal NC-SP2-p6 region nearest to the center. Here, we report the three-dimensional structures of individual immature HIV-1 virions, as obtained by electron cryotomography. The concentric shells of the Gag polyprotein are clearly visible, and radial projections of the different Gag layers reveal patches of hexagonal order within the CA and SP1 shells. Averaging well-ordered unit cells leads to a model in which each CA hexamer is stabilized by a bundle of six SP1 helices. This model suggests why the SP1 spacer is essential for assembly of the Gag lattice and how cleavage between SP1 and CA acts as a structural switch controlling maturation.  相似文献   

14.
Retroviral late (L) domains present within Gag act in conjunction with cellular proteins to efficiently release virions from the surface of the cell. Three different critical core sequences have been identified as required elements for L-domain function: PPPY, PTAP (also PSAP), and YPDL, with different retroviruses utilizing one or two of these core sequences. The human immunodeficiency virus type 1 (HIV-1) L domain is centered around a PTAP sequence in the p6 region of Gag. To assess the ability of heterologous L-domain sequences to be functionally interchanged for those in full-length HIV-1, we produced a series of constructs that replaced PTAP-containing p6(Gag) sequences with those of PPPY- or YPDL-based L domains. While previous studies had found that L domains are interchangeable in other retroviruses, most of the sequences introduced into p6(Gag) failed to substitute for PTAP-mediated L-domain function. One exception was the 11-amino-acid p2b sequence of Rous sarcoma virus (RSV) Gag, which could fully restore HIV-1 budding, while a PPPPY sequence exchange alone did not. This suggests that the RSV L domain consists of more than simply its core L-domain sequence. The HIV-p2b chimera was as infectious as the wild type, produced normal virions, and was sensitive to proteasome inhibitors. These results show that L-domain sequences are not necessarily interchangeable. Thus, HIV-1 Gag might have a more stringent requirement for L-domain function than the other retroviruses previously studied.  相似文献   

15.
Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.  相似文献   

16.
The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.  相似文献   

17.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

18.
We have previously demonstrated by Gag polyprotein budding assays that the Gag p9 protein of equine infectious anemia virus (EIAV) utilizes a unique YPDL motif as a late assembly domain (L domain) to facilitate release of the budding virus particle from the host cell plasma membrane (B. A. Puffer, L. J. Parent, J. W. Wills, and R. C. Montelaro, J. Virol. 71:6541-6546, 1997). To characterize in more detail the role of the YPDL L domain in the EIAV life cycle, we have examined the replication properties of a series of EIAV proviral mutants in which the parental YPDL L domain was replaced by a human immunodeficiency virus type 1 (HIV-1) PTAP or Rous sarcoma virus (RSV) PPPY L domain in the p9 protein or by proviruses in which the parental YPDL or HIV-1 PTAP L domain was inserted in the viral matrix protein. The replication properties of these L-domain variants were examined with respect to Gag protein expression and processing, virus particle production, and virus infectivity. The data from these experiments indicate that (i) the YPDL L domain of p9 is required for replication competence (assembly and infectivity) in equine cell cultures, including the natural target equine macrophages; (ii) all of the functions of the YPDL L domain in the EIAV life cycle can be replaced by replacement of the parental YPDL sequence in p9 with the PTAP L-domain segment of HIV-1 p6 or the PPPY L domain of RSV p2b; and (iii) the assembly, but not infectivity, functions of the EIAV proviral YPDL substitution mutants can be partially rescued by inclusions of YPDL and PTAP L-domain sequences in the C-terminal region of the EIAV MA protein. Taken together, these data demonstrate that the EIAV YPDL L domain mediates distinct functions in viral budding and infectivity and that the HIV-1 PTAP and RSV PPPY L domains can effectively facilitate these dual replication functions in the context of the p9 protein. In light of the fact that YPDL, PTAP, and PPPY domains evidently have distinct characteristic binding specificities, these observations may indicate different portals into common cellular processes that mediate EIAV budding and infectivity, respectively.  相似文献   

19.

Background

The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6.

Results

Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF) reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA) and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site.

Conclusions

Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively affects CA maturation and virus core formation, and consequently the infectivity of released virions.  相似文献   

20.
Host proteins are incorporated into retroviral virions during assembly and budding. We have examined three retroviruses, human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and Moloney murine leukemia virus (Mo-MuLV), for the presence of ubiquitin inside each of these virions. After a protease treatment to remove exterior viral as well as contaminating cellular proteins, the proteins remaining inside the virion were analyzed. The results presented here show that all three virions incorporate ubiquitin molecules at approximately 10% of the level of Gag found in virions. In addition to free ubiquitin, covalent ubiquitin-Gag complexes were detected, isolated, and characterized from all three viruses. Our immunoblot and protein sequencing results on treated virions showed that approximately 2% of either HIV-1 or SIV p6Gag was covalently attached to a single ubiquitin molecule inside the respective virions and that approximately 2 to 5% of the p12Gag in Mo-MuLV virions was monoubiquitinated. These results show that ubiquitination of Gag is conserved among these retroviruses and occurs in the p6Gag portion of the Gag polyprotein, a region that is likely to be involved in assembly and budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号