首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D Toncheva 《Human heredity》1986,36(6):348-351
69 out of 2,304 Vietnamese males were found to be hemizygous carriers of the Gd- gene. The glucose-6-phosphate dehydrogenase (G6PD) deficiency had a polymorphic frequency in the Vietnamese population (0.0299). Genetic heterogeneity in G6PD was found - 3 G6PD variants were found among 13 G6PD-deficient males studied (G6PD Canton, G6PD Hanoi and G6PD Vin Fu). Two new variants were identified - G6PD Hanoi and G6PD Vin Fu.  相似文献   

2.
Electrophoretic variants of blood proteins in Japanese   总被引:1,自引:0,他引:1  
Summary A total of 15,387 individuals living in Hiroshima and Nagasaki, of whom 10,864 are unrelated, were examined for erythrocyte triosephosphate isomerase (TPI) by starch gel electrophoresis using TEMM buffer, pH 7.4. Four kinds of new variants, one having a cathodal migration and three having anodal migrations, were encountered in this population. These variants were further characterized by starch gel electrophoresis using tris-EDTA buffer, pH 9.3, and isoelectric focusing. An anodally migrating allozyme TPI 2HR1 exhibited markedly decreased enzyme activity, as evaluated by the staining intensity of the variant bands. The level of TPI activity in erythrocytes from this individual with the phenotype TPI 1-2HR1 was about 60% of the normal mean. Family studies confirmed the genetic nature of all the variants.  相似文献   

3.
Distribution of glucose-6-phosphate dehydrogenase mutations in Southeast Asia   总被引:11,自引:0,他引:11  
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a heterogeneous enzyme abnormality with high frequency in tropical areas. We performed population screening and molecular studies of G6PD variants to clarify their distribution and features in Southeast Asia. A total of 4317 participants (2019 males, 2298 females) from 16 ethnic groups in Myanmar, Lao in Laos, and Amboinese in Indonesia were screened with a single-step screening method. The prevalence of G6PD-deficient males ranged from 0% (the Akha) to 10.8% (the Shan). These G6PD-deficient individuals and 12 G6PD-deficient patients who had been diagnosed at hospitals in Indonesia and Malaysia were subjected to molecular analysis by a combination of polymerase-chain-reaction-based single-strand conformation polymorphism analysis and direct sequencing. Ten different missense mutations were identified in 63 G6PD-deficient individuals (50 hemizygotes, 11 heterozygotes, and 2 homozygotes) from 14 ethnic groups. One missense mutation (1291 G-->A) found in an Indonesian Chinese, viz., G6PD Surabaya, was previously unknown. The 487 G-->A (G6PD Mahidol) mutation was widely seen in Myanmar, 383 T-->C (G6PD Vanua Lava) was specifically found among Amboinese, 871 G-->A (G6PD Viangchan) was observed mainly in Lao, and 592 C-->T (G6PD Coimbra) was found in Malaysian aborigines (Orang Asli). The other five mutations, 95 A-->G (G6PD Gaohe), 1003 G-->A (G6PD Chatham), 1360 C-->T (G6PD Union), 1376 G-->T (G6PD Canton), and 1388 G-->A (G6PD Kaiping) were identified mostly in accordance with distributions reported previously.  相似文献   

4.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24 subjects carrying the Mahidol mutation and two carrying the Kaiping mutation also carried the 1311C>T/IVS11nt93T>C SNPs. Further studies are needed to determine the enzyme levels of the G6PD deficient people and presence of additional G6PD mutations in the study population.  相似文献   

5.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency was found in 3.2% of the male population living in the urban area of Algiers. The deficient subjects originated from multiple geographic regions of Northern Algeria, with prevalence of individuals of Berber-Kabyle origin. Red blood cell G6PD was partially purified and characterized in deficient males from 17 families, and six different variants were found. Among them, only one, the Gd(-) Kabyle variant, had been previously described. It was detected in nine families. The other five variants were new: Gd(-) Laghouat (four cases), Gd(-) Blida (one case), Gd(-) Thenia (one case), Gd(-) Titteri (one case), and Gd(-) Alger (two brothers), Strikingly, the common Mediterranean variant was not found. G6PD deficiency is heterogeneous in northern Algeria where autochtonous variants seem to prevail. The Kabyle variant may be common in this country.  相似文献   

6.
Summary A total of 3000 men living in Yamaguchi were screened for glucose-6-phosphate dehydrogenase (G6PD) deficiency using Beutler's spot test and three types of starch gel electrophoresis. These electrophoresis used a phosphate buffer system at pH 7.0, a TRIS-EDTA-borate buffer system at pH 8.6, and a TRIS-hydrochloride buffer system at pH 8.8. Fifteen G6PD-deficient variants were found at the rate of 0.5% and classified into four groups. As new variants, G6PD Konan, Kamiube, and Kiwa were identified. These three variants had a mild to moderate G6PD deficiency and were not associated with any clinical signs. G6PD Konan had fast electrophoretic mobility as compared with normal levels, G6PD Kiwa had slightly elevated electrophoretic mobility, and G6PD Kamiube had normal electrophoretic mobility. These three variants had normal levels of Km G6P, Km NADP, and Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NAPD, normal heat stability, and a normal pH curve. The other variant was G6PD Ube, which we had previously found in Yamaguchi (Nakashima et al., 1977). One boy with G6PD Ube was Korean.  相似文献   

7.
In the Ferrara district, an area south of the Po delta, four different variants of glucose-6-phosphate dehydrogenase (G6PD;E.C.1.1.49) have been described as a result of biochemical characterization of the enzyme protein: one was G6PD Mediterranean (G6PD Med) and three were local variants named Ferrara I, II, and III. The Ferrara I variant was recently analysed at the DNA level and shown to correspond to G6PD A376G/202A, while the mutations causing the variants II and III, still remain unknown. We analysed the G6PD coding region of 18 apparently unrelated G6PD deficient subjects, whose families have lived in the Ferrara district for at least three generations: 12 subjects had G6PD Med563T/1311T, 3, G6PD Santamaria376G/542T and 2, G6PD A-376G/202A. In one subject we found a new mutation, a GA transition at nucleotide 242 causing an ArgHis amino acid replacement at position 81. We named this new variant G6PD Lagosanto242 A. Phenotypically the enzyme has nearly normal kinetic properties and appears different from the variants Ferrara II and III.  相似文献   

8.
BackgroundPlasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis.Methods & findingsThis study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those).ConclusionsIn this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.  相似文献   

9.
Summary The incidence of G6PD deficiency among 338 Thai males with senile cataracts was 5.92% while 446 control Thai males gave an incidence of 6.95%. The figures in females were 16.29% and 14% among 201 senile cataracts females and 200 control females respectively. The age of onset of senile cataracts was not different between the G6PD deficient and G6PD normal groups. The findings indicate that, at least in Thailand, G6PD deficiency in general is not a factor in cataractogenesis.  相似文献   

10.
Studies of five heterozygous females from three kindreds segregating incontinentia pigmenti indicate that cells expressing the mutation have been eliminated from skin fibroblast cultures and in varying degrees from hematopoietic tissues. Clonal analysis was carried out using G6PD variants and methylation patterns at the HPRT locus. Our results confirm X linkage in these families and suggest that selection against cells expressing mutations that are lethal to males in utero may help ameliorate the deleterious phenotype in carrier females.  相似文献   

11.
Some Mexican glucose-6-phosphate dehydrogenase variants revisited   总被引:1,自引:1,他引:0  
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency appears to be fairly common in Mexico. We have now examined the DNA of three previously reported electrophoretically fast Mexican G6PD variants, — G6PD Distrito Federal, G6PD Tepic, and G6PD Castilla. All three of these variants, believed on the basis of biochemical characterization and population origin to be unique, have the GA transition at nucleotide 202 and the AG transition at nucleotide 376, mutations that we now recognize to be characteristic of G6PD A —. Two other Mexican males with G6PD deficiency were found to have the same mutation. All five have the (NlaIII/ FokI/PvuII/PstI) haplotype characteristic of G6PD A in Africa. Since the PvuII+ genotype seems to be rare in Europe, we conclude that all of these G6PD A-genes had their ancient origin in Africa, although in many of the Mexican patients with G6PD A –202A/376G the gene may have been imported more recently from Spain, where this variant, formerly known as G6PD Betica, is also prevalent.  相似文献   

12.
In studying the relationship between genetic abnormalities of red blood cells and malaria endemicity in the Vanuatu archipelago in the southwestern Pacific, we have found that of 1,442 males tested, 98 (6.8%) were G6PD deficient. The prevalence of GdPD deficiency varied widely (0%-39%), both from one island to another and in different parts of the same island, and generally correlated positively with the degree of malaria transmission. The properties of G6PD from GdPD-deficient subjects were analyzed in a subset of 53 samples. In all cases the residual red-blood-cell activity was < 10%. There were three phenotypic patterns. PCR amplification and sequencing of the entire coding region of the G6PD gene showed that the first of these patterns corresponded to G6PD Union (nucleotide 1360C-->T; amino acid 454Arg-->Cys), previously encountered elsewhere. Analysis of samples exhibiting the second pattern revealed two new mutants: G6PD Vanua Lava (nucleotide 383T-->C; amino acid 128Leu-->Pro) and G6PD Namoru (nucleotide 208T-->C; amino acid 70Tyr-->His); in three samples, the underlying mutation has not yet been identified. Analysis of the sample exhibiting the third pattern revealed another new mutant: G6PD Naone (nucleotide 497G-->A; amino acid 166Arg-->His). Of the four mutations, G6PD Union and G6PD Vanua Lava have a polymorphic frequency in more than one island; and G6PD Vanua Lava has also been detected in a sample from Papua New Guinea. G6PD deficiency is of clinical importance in Vanuatu because it is a cause of neonatal jaundice and is responsible for numerous episodes of drug-induced acute hemolytic anemia.  相似文献   

13.
The electrophoretic mobility and level of enzyme activity of glucose-6-phosphate dehydrogenase (G6PD) was established in 100 unrelated Algerian males with G6PD deficiency. DNA from these subjects was analysed for the presence of certain known G6PD mutations by the appropriate restriction enzyme digestion of fragments amplified by the polymerase chain reaction. Where the mutation could not be identified in this way, the samples were subjected to single-strand conformation polymorphism analysis and abnormal fragments were sequenced. In this way, eight different mutations have been identified, of which five are polymorphic and account for 92% of the samples. The most common variants are G6PD A-(46%) and G6PD Mediterranean (23%), both of which were associated with favism. A new polymorphic variant, G6PD Aures, has been identified during the course of this study, whereas another, G6PD Santamaria, has now been established as a polymorphic variant (11%). Thus, G6PD deficiency in Algeria is heterogeneous, suggesting that there has been significant gene flow, both from sub-Saharan Africa and from other parts of the Mediterranean.  相似文献   

14.
In a previous starch-gel electrophoresis study of erythrocyte phosphoglucomutase-1 (PGM1) in 23,095 Japanese from Hiroshima and Nagasaki, we detected 14 types of rare variant alleles. To determine sequence differences in these rare alleles, cell lines were established from peripheral B-lymphocytes from 24 unrelated individuals in whom nine types of rare variants are presumed to exist on the basis of earlier electrophoresis studies. cDNAs reverse transcribed from mRNAs extracted from these cell lines were amplified by polymerase chain reaction and sequences determined. Amino acid substitution types were deduced from each cDNA sequence. Although two individuals were reported to have an identical electromorph (PGM1 4HR3), sequence analysis revealed that alleles encoding these electromorphs possessed different base substitutions, and one was renamed PGM1 4HR4. As the amino acid substitution of ten different variants could be deduced by cDNA sequence in this study, the effect of each amino acid substitution on enzyme activity could be precisely simulated. The secondary structure of each variant predicted by computer simulations revealed that very decreased activity observed on PGM1 4HR2 protein was caused by significant secondary structure change introduced by the amino acid substitution. On the basis of the crystal structure, the amino acid substitutions of the ten types of rare variants seem to be outside the active center of this enzyme.  相似文献   

15.
Summary A total of 362 males from various regions of Papua New Guinea were screened for red cell glucose-6-phosphate dehydrogenase (G6PD) activity. Twenty-six G6PD deficient individuals were identified. Biochemical characterization of G6PD purified from these subjects has revealed 13 new variants and several copies of previously described forms of G6PD. This study illustrates the extreme heterogeneity of G6PD deficiency among the people of Papua New Guinea.  相似文献   

16.
Glucose 6-phosphate dehydrogenase is a highly polymorphic enzyme encoded by a human X-linked gene (Xq2.8). This enzyme catalyses the first step of pentose phosphate pathway, that converts glucose 6-phosphate to 6-phosphogluconate with production of NADPH2. G6PD deficiency is the most common human metabolic inborn error affecting more than 400 million people world wide. The main clinical manifestations are acute hemolytic anemia and jaundice, triggered by infection or ingestion of Fava beans or oxidative drugs. A predominant variant of G6PD named Mediterranean is often associated with favism. This has been evident in several countries including Northern coastal provinces of Iran. Other current variants are Chatham and Cosenza. Molecular identification of the most prevalent mutations in G6PD gene was carried out in 71 males and females with G6PD deficiency. They were from Iranian Northern province of Golestan. DNA was extracted from blood samples and analyzed for known G6PD mutation by PCR and restriction fragment length polymorphisms (RFLP) technique. Adapting this method, revealed that Mediterranean mutation at nt 563(C-->T) is predominant in the area (69%) and 26.7% of patients have Chatham mutation at nt 1003(G-->A). Findings indicate a higher prevalence of these mutations, in Golestan compared to Mazandaran (66.2% Mediterranean and 19% Chatham mutation) and Gilan (86.4% Mediterranean and 9.71% Chatham mutations). Cosenza mutation at nt 1376(G-->C), by PCR-RFLP technique was not found among other 3 samples (4.3%). The similarity of these results with mutations in Italy indicates probable existence of a common ancestral origin in the observed populations.  相似文献   

17.
Summary The existence of a microheterogeneity of glucose-6-phosphate dehydrogenase (G6PD) in human erythrocyte lysates has been previously demonstrated using isoelectric focusing (Der Kaloustian et al., 1974; Turner et al., 1975). The application of this method, modified in some aspects, to the identification of various G6PD variants led to interesting conclusions. The results reported here have been obtained from a study of four distinct molecular types: Gd(-)Mediterranean, Gd(-) Kabyle, the African Gd(+) A, and a new almost undescribed G6PD variant with severe enzyme deficiency named Gd(-) Muret.  相似文献   

18.
Summary Two new glucose-6-phosphate dehydrogenase (G6PD) variants were discovered in Japan. The first, found in a 9-year-old male, was associated with chronic hemolysis and hemolytic crises after upper respiratory infections. The enzyme activity of the variant was 2.9% of normal. The patient's G6PD showed an increased utilization of substrate analogue, deamino-NADP, and thermal instability. The second variant occurred in a 7-year-old male with druginduced hemolysis. The main enzymatic characteristics were reduced enzyme activity, being 6.4% of normal, faster-thannormal anodal electrophoretic mobility, slightly high Michaelis constant for glucose-6-phosphate, thermal instability, and biphasic pH optima. Enzymatic properties of these variants allowed each to be distinguished from previously reported variants. The first variant was designated Gd (-) Gifu and the other, Gd (-) Fukuoka.  相似文献   

19.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.  相似文献   

20.
Jiang W  Yu G  Liu P  Geng Q  Chen L  Lin Q  Ren X  Ye W  He Y  Guo Y  Duan S  Wen J  Li H  Qi Y  Jiang C  Zheng Y  Liu C  Si E  Zhang Q  Tian Q  Du C 《Human genetics》2006,119(5):463-478
A systematic study on the structure and function of Glucose-6-phosphate dehydrogenase (G6PD) variations was carried out in China. A total of 155,879 participants were screened for G6PD deficiency by the G6PD/6PGD ratio method and 6,683 cases have been found. The prevalence of G6PD deficiency ranged from 0 to 17.4%. With informed consent, 1,004 cases from 11 ethnic-based groups were subjected to molecular analysis. Our results showed the followings: (1) The G6PD variants are consistent across traditional ethnic boundaries, but vary in frequencies across ethnic-based groups in Chinese population, (2) The G6PD variants in Chinese population are different from those in African, European, and Indian populations, (3) A novel G6PD-deficiency mutation, 274C→T, has been found, and (4) Denaturing high performance liquid chromatography is of great advantage to detecting G6PD-deficient mutations for diagnosis and genetic counseling. Moreover, functional analysis of the human G6PD variants showed the following: (1) The charge property, polarity, pK-radical and side-chain radical of the substituting amino acid have an effect on G6PD activity, (2) The G6PDArg459 and Arg463 play important roles in anchoring NADP+ to the catalytic domain to maintain the enzymatic activity, and (3) The sequence from codon 459 to the carboxyl terminal is essential for the enzymatic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号