首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We studied recovery of poly(3-hydroxybutyric acid) (PHB) from Alcaligenes eutrophus and a recombinant Escherichia coli strain harboring the A. eutrophus poly(3-hydroxyalkanoic acid) biosynthesis genes. The amount of PHB degraded to a lower-molecular-weight compound in A. eutrophus during the recovery process was significant when sodium hypochlorite was used, but the amount degraded in the recombinant E. coli strain was negligible. However, there was no difference between the two microorganisms in the patterns of molecular weight change when PHB was recovered by using dispersions of a sodium hypochlorite solution and chloroform. To understand these findings, we examined purified PHB and lyophilized cells containing PHB by using a differential scanning calorimeter, a thermogravimetric analyzer, and nuclear magnetic resonance. The results of our analysis of lyophilized whole cells containing PHB with the differential scanning calorimeter suggested that the PHB granules in the recombinant E. coli strain were crystalline, while most of the PHB in A. eutrophus was in a mobile amorphous state. The stability of the native PHB in the recombinant E. coli strain during sodium hypochlorite treatment seemed to be due to its crystalline morphology. In addition, as determined by the thermogravimetric analyzer study, lyophilized cell powder of the recombinant E. coli strain containing PHB exhibited greater thermal stability than purified PHB obtained by chloroform extraction. The PHB preparations extracted from the two microorganisms had identical polymer properties.  相似文献   

2.
The structure of native poly(3-hydroxybutyrate) (PHB) granules of Alcaligenes eutrophus was characterized in wet cells or wet granules by analysis of X-ray diffraction. The PHB granules in intact cells were completely amorphous, but became crystalline after treatment with alkali or sodium hypochlorite. The native PHB granules were isolated from the cells by treatment with enzymes and sonic oscillation. The isolated PHB granules remained amorphous in suspension. The PHB granules were crystallized by various treatments with aqueous acetone, alkaline solution (of either NaOH or sodium hypochlorite), and lipase in an aqueous environment. These results suggest that crystallization of PHB molecules is started by the removal of a lipid component from native granules by various treatments.  相似文献   

3.
Intracellular degradation of poly(3-hydroxybutyrate) (PHB) in bacteria is not yet clear. The properties of the autodigestion of native PHB granules from Zoogloea ramigera I-16-M were examined. The release of D(-)-3-hydroxybutyrate was observed only at pH values higher than about 8.5 and at relatively high ionic strength (optimal concentration 200 mM NaCl). Triton X-100 and diisopropylfluorophosphate inhibited this reaction. Addition of the supernatant fraction of Z. ramigera did not increase the release of D(-)-3-hydroxybutyrate from the native PHB granules. On the other hand, using the protease-treated PHB granules from Alcaligenes eutrophus as a substrate, PHB depolymerase activity was detected in the supernatant fraction of Z. ramigera cells. The soluble PHB depolymerase showed similar properties to the enzyme in the PHB granules. Since PHB depolymerase activity was found in fractions containing D(-)-3-hydroxybutyrate oligomer hydrolase activity, which were separated by DEAE-Toyopearl or by Sephacryl S-100, it is possible that the intracellular PHB depolymerase is identical to the oligomer hydrolase which has been purified already.  相似文献   

4.
Abstract Intracellular degradation of poly(3-hydroxybutyrate) (PHB) in bacteria is not yet clear. The properties of the autodigestion of native PHB granules from Zooglea ramigera I-16-M were examined. The release of d (−)-3-hydroxybutyrate was observed only at pH values higher than about 8.5 and at relatively high ionic strength (optimal concentration 200 mM NaCl). Triton X-100 and diisopropylfluorophosphate inhibited this reaction. Addition of the supernatant fraction of Z. ramigera did not increase the release of d (−)-3-hydroxybutyrate from the native PHB granules. On the other hand, using the protease-treated PHB granules from Alcaligenes eutrophus as a substrate, PHB depolymerase activity was detected in the supernatant fraction of Z. ramigera cells. The soluble PHB depolymerase showed similar properties to the enzyme in the PHB granules. Since PHB depolymerase activity was found in fractions containing d (−)-3-hydroxybutyrate oligomer hydrolase activity, which were separated by DEAE-Toyopearl or by Sephacryl S-100, it is possible that the intracellular PHB depolymerase is identical to the oligomer hydrolase which has been purified already.  相似文献   

5.
The addition of poly(ethylene glycol) (Mn = 200 g/mol) (PEG-200) to the fermentation media of Alcaligenes eutrophus and Alcaligenes latus at various stages of growth resulted in the synthesis of poly(3-hydroxybutyrate) (PHB) with bimodal molecular weight distributions. The presence of 2% w/v-PEG-200 did not have deleterious effects on PHB volumetric yields and cell productivity. In general, the Mn values of the high (H) and low (L) fractions showed little variability as a function of the time at which PEG-200 was added to the cultures. By this approach, the H:L ratios (w/w) of the PHB synthesized by A. eutrophus and A. latus were varied from 9:91 to 76:24 and from 16:84 to 88:12, respectively. It is believed that the H fractions were formed prior to the addition of PEG-200 to the cultures. Also, once PEG-200 was made available to the cells, PEG-200 acted as a switch so that the reduced molecular weight fraction was formed. In addition, a necessary requirement for the above is that the frequency of transesterification reactions during polymer synthesis was small. The efficiency that PEG-200 reduced the molecular weight of the PHBs formed by both bacteria appears similar. Indirect evidence suggests that the PHB L fractions formed by A. latus subsequent to PEG-200 addition consist primarily of chains that have PEG terminal groups. This terminal chain structure was not observed for PHB formed by A. eutrophus.  相似文献   

6.
Antibodies raised against the Alcaligenes eutrophus poly-beta-hydroxybutyrate (PHB) synthase polypeptide were used for immunocytochemical localization of the synthase enzyme in whole cells and purified PHB granules. The data presented demonstrate for the first time that the synthase enzyme is located on the surface of the PHB granule rather than being incorporated inside the granule during its formation. From these basic observations and data from the recent literature, a model of granule assembly is proposed.  相似文献   

7.
Perspectives on the production of polyhydroxyalkanoates in plants   总被引:2,自引:0,他引:2  
Abstract Poly-β-hydroxybutyrate (PBH) was recently shown to be produced in genetically engineered plants which expressed the genes from Alcaligenes eutrophus responsible for the formation of PHB from acetoacetyl-CoA. The transgenic plants accumulated PHB as granules which were similar in size and appearance to the bacterial PHB granules. These observations suggest that large scale production of PHB and other polyhydroxyalkanoates in genetically altered crop plants may be feasible.  相似文献   

8.
Abstract Radiolabelled glucose was added to a batch culture of Alcaligenes eutrophus during the accumulation of poly(3-hydroxybutyrate) (PHB) to label newly synthesized polymer. The specific radioactivity of the polymer continued to increase, by approximately 30%, after the cessation of PHB accumulation, indicating that turnover of PHB was occurring. Fractionation of PHB showed that high molecular mass polymer was gradually replaced by PHB of lower molecular mass. Turnover of PHB is the cause of the slow decline in the molecular mass of PHB following the cessation of polymer accumulation but is unlikely to be the sole reason for the more rapid decrease in the molecular mass of PHB during the accumulation phase.  相似文献   

9.
The function of the polyhydroxyalkanoic acid (PHA) granule-associated GA14 protein of Rhodococcus ruber was investigated in Escherichia coli XL1-Blue, which coexpressed this protein with the polyhydroxybutyric acid (PHB) biosynthesis operon of Alcaligenes eutrophus. The GA14 protein had no influence on the biosynthesis rate of PHB in E. coli XL1-Blue(pSKCO7), but this recombinant E. coli strain formed smaller PHB granules than were formed by an E. coli strain that expressed only the PHB operon. Immunoelectron microscopy with GA14-specific antibodies demonstrated the binding of GA14 protein to these mini granules. In a previous study, two hydrophobic domains close to the C terminus of the GA14 protein were analyzed, and a working hypothesis that suggested an anchoring of the GA14 protein in the phospholipid monolayer surrounding the PHA granule core by these hydrophobic domains was developed (U. Pieper-Fürst, M. H. Madkour, F. Mayer, and A. Steinbüchel, J. Bacteriol. 176:4328-4337, 1994). This hypothesis was confirmed by the construction of C-terminally truncated variants of the GA14 protein lacking the second or both hydrophobic domains and by the demonstration of their inability to bind to PHB granules. Further confirmation of the hypothesis was obtained by the construction of a fusion protein composed of the acetaldehyde dehydrogenase II of A. eutrophus and the C terminus of the GA14 protein containing both hydrophobic domains and by its affinity to native and artificial PHB granules.  相似文献   

10.
Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.  相似文献   

11.
Abstract Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), wide-angle X-ray powder diffractometry (WAXD) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the crystallization behavior of PHB granules from Alcaligenes eutrophus isolated by enzymatic purification. TEM examination of freeze dried granules after mortar and pestle grinding at liquid nitrogen temperature revealed that the dry granules have a non-crystalline core/crystalline shell morphology. TEM micrographs sections of PHB granules showed that upon annealing, the non-crystalline molecules in the core transform into stacks of lamellar crystals with a thickness of ∼ 100 Å. The FTIR results revealed the presence of bound water in a sample of freeze dried granules and WAXD of the same sample showed an increase in crystallinity after removal of this water by vacuum drying. The WAXD diffractograms showed an increase in crystallinity of PHB granules when going from the in vivo to the dry state. In spite of the possibility of deforming them at very low temperatures (liquid nitrogen temperature) the glass transition temperature ( T g ) of nascent PHB granules, as revealed by the DSC thermograms, was in the range −0.5−4°C. These results suggest that water is responsible for keeping the core of nascent PHB granules in a non-crystalline state. A model for biosynthesis where emerging PHB chains in an extended conformation are simultaneously hydrogen bonded to water molecules is proposed.  相似文献   

12.
Several processes for the production and recovery of poly(3-hydroxybutyrate) (PHB) by Alcaligenes eutrophus, Alcaligenes latus, Methylobacterium organophilum, and recombinant Escherichia coli were designed based on the previously reported data and analyzed by computer-aided bioprocess design. PHB productivity, content, and yield significantly affected the final price of PHB. For the annual production of 2,850 tonnes of purified PHB, the process employing A. eutrophus with the recovery method of surfactant-hypochlorite digestion resulted in lowest price of PHB, $ 5.58/kg. As the production scale increased to one million tonnes per year, the price of PHB dropped to $ 4.75/kg. The cost of carbon substrate significantly affected the overall economics in large production scale. Therefore, the production cost can be considerably lowered when agricultural wastes, such as whey and molasses, are used.  相似文献   

13.
The influence of a variety of treatments on the mobility and crystallinity of poly(hydroxybutyrate) (PHB) in whole cells and native granules has been proved using 13C-n.m.r. spectroscopy and X-ray powder diffraction, and correlated with the known biological effects of these treatments. It was concluded that at least water is responsible for PHB plasticization in vivo, and that only native mobile PHB is susceptible to depolymerases. Another, probably hydrophobic, component appears to be involved either as plasticizer or nucleation inhibitor. Three states of the granule are identified in addition to the native, biologically-competent state: freeze-drying of whole cells leads to a partially-immobilized amorphous state which can be restored virtually to native mobility by rehydration; extended centrifugation of native granules in aqueous suspension, or treatment with hydrophobic detergents under certain conditions, leads to a crystalline state that is less susceptible to exogenous depolymerase; and heating to 95 degrees C or refrigeration has no detectable effect on mobility but leads to inactivation of the granule, presumably via damage to superficial membrane or protein.  相似文献   

14.
A 1H correlation NMR study is reported, on the metabolism of a photosynthetic bacterium, Rhodopseudomonas palustris, in dark and light anaerobic conditions. Alkali treatment as well as sonication of the cells were employed to follow the process of accumulation and decomposition of poly-beta-hydroxybutyrate (PHB) which is the reserve material for the bacterium. It was shown that synthesis of PHB from trans-crotonate proceeds in the granules of the cells. It was also demonstrated that under anaerobic light conditions photometabolism and glycolysis generally compete with concomitant synthesis and decomposition of PHB, respectively, and that glycolysis gradually replaces photometabolism with aging of the cells. In contrast, glycolysis is always predominant in the dark and PHB is primarily used as the carbon source. It was observed that photo-induced transport of beta-hydroxybutyrate through the membrane occurs when photometabolism and glycolysis are equally active in the light. The implications of this observation are briefly discussed.  相似文献   

15.
From genomic libraries of the purple non-sulfur bacteria Rhodospirillum rubrum Ha and Rhodobacter sphaeroides ATCC 17023 in the broad-host range cosmid pVK100, we cloned a 15- and a 14-kbp HindIII restriction fragment, respectively. Each of these fragments restored the ability to accumulate poly(3-hydroxybutyrate) (PHB), in the PHB-negative mutant Alcaligenes eutrophus PHB-4. These hybrid cosmids also complemented PHB-negative mutants derived from wild-type R. rubrum or R. sphaeroides. Both fragments hybridized with the PHB synthase structural gene of A. eutrophus H16 and conferred the ability to express PHB synthase activity. Only the 15-kbp HindIII fragment from R. rubrum conferred on the mutant PHB-4 the ability to form large PHB granules (length up to 3.5 microns).  相似文献   

16.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

17.
The poly-beta-hydroxybutyrate (PHB) biosynthetic pathway from Alcaligenes eutrophus H16 has been cloned and expressed in Escherichia coli. Initially, an A. eutrophus H16 genomic library was constructed by using cosmid pVK102, and cosmid clones that encoded the PHB biosynthetic pathway were sought by assaying for the first enzyme of the pathway, beta-ketothiolase. Six enzyme-positive clones were identified. Three of these clones manifested acetoacetyl coenzyme A reductase activity, the second enzyme of the biosynthetic pathway, and accumulated PHB. PHB was produced in the cosmid clones at approximately 50% of the level found in A. eutrophus. One cosmid clone was subjected to subcloning experiments, and the PHB biosynthetic pathway was isolated on a 5.2-kilobase KpnI-EcoRI fragment. This fragment, when cloned into small multicopy vectors, can direct the synthesis of PHB in E. coli to levels approaching 80% of the bacterial cell dry weight.  相似文献   

18.
Abstract The effect of poly(3-hydroxybutyrate) (PHB) content on the survival of wild-type strains and PHB negative mutants of Bacillus megaterium and Alcaligenes eutrophus in natural waters was studied. The survival strategy of B. megaterium was dominated by the development of resistant forms, but the number of the wild-type vegetative cells was higher than that of PHB mutant strain. In some environmental conditions the mutant spores needed a heat shock for germination, a fact that suggests, for the first time, that PHB plays a role in this phenomenon. Survival of A. eutrophus wild-type strain in all experiments was higher compared to the PHB mutant, and differences were significant. In raw river water, survival of both species was lower than in sterile river water.  相似文献   

19.
Organisms isolated from activated sludge and identified as Zoogloea ramigera accumulated large amounts of sudanophilic granules as the cultures flocculated. The granules were extracted by chloroform and precipitated with ether from acid-hydrolyzed cells. Identification of the sudanophilic granules as poly-β-hydroxybutyric acid (PHB) was confirmed by physical, chemical, and infrared spectral analyses. The isolated polymer accounted for 12.0 to 50.5% of the dry weight of the cells. The polymer was not synthesized when the culture was grown in a growth-limiting concentration of organic substrate; it did accumulate when the culture was grown in medium enriched with carbon and energy sources. An increase in concentration of intracellular PHB was directly proportional to optical density and uptake of glucose. Aside from intracellular storage of PHB as endogenous metabolite, the accumulation of PHB is noted as a possible mechanism of flocculation.  相似文献   

20.
Abstract Fifty different polyhydroxyalkanoic acid (PHA)-accumulating bacterial strains were investigated for the occurrence of phasin proteins bound to PHA granules and related to the GA24 protein of Alcaligenes eutrophus H16, by isolating PHA granules and Western blot analysis of granule-associated proteins employing antibodies raised against the GA24 protein. It could be demonstrated that the PHA granules of many poly(3-hydroxybutyrate)-accumulating bacteria exhibited ja similar protein pattern, and a predominant protein of 24 ± 2 kDa occurred in the granules of A. eutrophus strains A7, CH34, JMP222, N9A and TF93 exhibiting N-terminal amino acid sequences identical to that of the GA24 protein. Proteins bound to the granules of A. latus, Burkholderia caryophvli B. cepacia B. solanacearum, Pseudomonas glathei. Rhodobacter sphaeroides and Telluria mixta also gave positive immunoreactions. Granule-associated proteins of small size also; occurred in various strains of the Gram-positive bacteria Bacillus megaterium and R. ruher as well as in the Gram-negative bacteria Azotohacter sp., Chromatium vinosum, Comamonas acidovorans, Methylobacterium sp., Mycoplana ruhra, Paracoccus denitrificans, Pseudomonas sp., Rhodospirillum ruhrum, Rubrivivax gelatinosus and Thiocystis violacea ; however, they gave no immunoreaction. This study clearly demonstrated that phasins are wide-spread if not essential in PHA-accümulating bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号