首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
灰葡萄孢菌致病机理研究进展   总被引:1,自引:0,他引:1  
赵红霞  苟萍 《生物技术》2014,(1):100-103
灰葡萄孢菌能引起多种双子叶植物感染灰霉病,导致农作物减产,带来巨大的经济损失。通过对灰葡萄孢菌各种致病因子的研究,为灰霉病的有效防治提供科学依据。该文阐述了灰葡萄孢菌的重要致病因子,并分析了致病因子的致病机制。灰葡萄孢菌能以菌丝、分生孢子及菌核多种感染模式侵染植物,寄主范围十分广泛。该病原菌在侵染过程中通过信号转导途径调控与致病相关的基因和蛋白表达,产生毒素,分泌胞外水解酶,共同协同作用完成致病过程。  相似文献   

2.
番茄灰霉病病原菌分离鉴定及拮抗菌筛选   总被引:2,自引:0,他引:2  
灰葡萄孢菌(Botrytis cinerea)引起的番茄灰霉病是番茄生产上的重要病害。从番茄果实表面成功分离了1株真菌BC2016-2,经过鉴定确定其为灰霉病的病原菌——灰葡萄孢菌;以灰葡萄孢菌BC2016-2为指示菌,筛选到了3株具有明显抑制作用的菌株,分别为解淀粉芽孢杆菌(Bacillus amyloliquefacien)CM3、巨大芽孢杆菌(Bacillus megaterium)Y-30和解淀粉芽孢杆菌Y-48。盆栽实验结果显示,菌株CM3、Y-30和Y-48对灰葡萄孢菌BC2016-2引起的番茄灰霉病的防治效果分别为65.58%、54.1%和72.13%。  相似文献   

3.
通过平板抑菌试验和孢子萌发试验研究了芳樟醇对灰葡萄孢的生长抑制作用,并通过盆栽试验进一步验证了芳樟醇对番茄灰霉病的防控效果。结果表明: 芳樟醇能够显著抑制灰葡萄孢菌丝的生长,半最大效应浓度(EC50)值为0.581 mL·L-1。孢子萌发试验中,芳樟醇能够有效抑制灰葡萄孢孢子的萌发,并表现出浓度依赖性。芳樟醇处理提高了灰葡萄孢菌菌丝体的相对电导率和丙二醛(MDA)含量,说明芳樟醇可引起氧化损伤效应导致灰葡萄孢菌的膜系统被破坏;芳樟醇处理后灰葡萄孢菌中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性较对照组分别下降了27.4%、68.9%和26.0%,说明芳樟醇抑制了灰葡萄孢菌体内的抗氧化系统。盆栽试验结果显示,芳樟醇处理的病斑直径较对照组显著降低;番茄叶片中的SOD、CAT、POD、多酚氧化酶和苯丙氨酸解氨酶活性均显著高于对照组;而MDA含量下降了41.5%,说明芳樟醇可减轻灰葡萄孢菌对番茄植株造成的氧化损伤以提高植物抗病性。综上,芳樟醇对灰葡萄孢的生长有显著抑制作用并对番茄灰霉病有较好的防治效果,研究结果可为开发新型植物源抑菌剂防控番茄灰霉病提供理论依据。  相似文献   

4.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   

5.
摘要:【目的】研究灰葡萄孢菌(Botrytis cinerea)基因组中T-DNA插入位点的整合模式特征。【方法】利用农杆菌(Agrobactirium tumfacience)介导法构建灰葡萄孢菌T-DNA插入突变体库。利用热不对称交错PCR(TAIL-PCR)技术对转化子中T-DNA的旁侧序列进行扩增和克隆,对获得的旁侧序列进行比对分析。【结果】T-DNA插入在灰葡萄孢菌基因组非编码区的占69%,插入在外显子的占30%。T-DNA在插入的过程中发生了碱基缺失、增加等重组现象,其中左边界(left border,LB)整合到基因组碱基缺失较少,有的保持完整,而右边界(right border,RB)及其近邻的T-DNA区域缺失碱基较多。T-DNA的插入位点还发现有额外的序列插入。【结论】对灰葡萄孢菌中插入T-DNA的整合模式的分析为开展该菌的功能基因组学奠定了基础。  相似文献   

6.
[目的]明确灰葡萄孢菌AUR1基因(Bc AUR1)对灰葡萄孢菌细胞生长、发育和繁殖的作用。[方法]采用PCR扩增Bc AUR1的P和T片段,依次克隆于p TFCM质粒载体的潮霉素基因两侧,构建灰葡萄孢菌AUR1断裂基因表达载体,通过农杆菌介导转化灰葡萄孢菌,在潮霉素抗性培养基上筛选转化子。Ab A处理灰葡萄孢菌,观察细胞形态。[结果]断裂基因转化子比空载转化子显著减少,说明Bc AUR1断裂基因同源重组替代了宿主AUR1基因,导致转化子不能存活。Ab A显著影响野生型灰葡萄孢菌的生长发育,导致孢子萌发延迟、菌丝形态异常,不能形成分生孢子头;但Ab A不影响抗Ab A突变体Bc AUR1a的生长发育。[结论]AUR1基因对灰葡萄孢菌生长、发育和繁殖起重要作用。  相似文献   

7.
根据灰霉病菌Botrytis cinerea对苯并咪唑类(苯莱特)及N-苯氨基甲酸酯类(乙霉威)杀菌剂的抗性与其β-微管蛋白的198和200位密码子的单碱基突变紧密相关的原理,建立了一种同时检测灰霉病菌对这两类杀菌剂抗性表型的特异等位聚合酶链式反应(ASP,Allele-specific Polymerase Chain Reaction)方法,即将突变的单碱基作为正引物的3'末端,与之对应的未突变的单碱基作为负引物的3'末端, 自行设计了LP4~LP8等五个等位点特异性引物,应用包括这五个引物在内的七组引物,对生测为BenSNPCR、BenHRNPCS和BenHRNPCR菌株进行了ASP扩增,结果表明:该方法可以检测出相应抗药表型的菌株,并能有效地检测田间灰霉病菌的抗药性,从而该方法克服了生物检测方法费时和准确性差等缺点。该方法还能鉴定出生测法确定为同一表型如BenHRNPCR 中的BenSNPCR异核菌丝,或灰霉病菌侵染寄主后所产生的回复突变,因此其方法的灵敏度极高,可应用于灰霉病菌抗药性分子生态学机理研究和田间抗性菌株的快速鉴定。由于未发现BenMRNPCR型菌株,其适用性有待进一步验证。  相似文献   

8.
灰葡萄孢分生孢子产生相关基因的克隆及功能分析   总被引:3,自引:0,他引:3  
[目的]克隆灰葡萄孢分生孢子产生相关基因,并研究其功能,为进一步研究灰葡萄孢分生孢子产生机理和灰葡萄孢侵染及致病机理奠定基础.[方法]通过筛选灰葡萄孢ATMT突变体库,获得一株不能产生分生孢子的突变菌株BCt78,采用PCR和Southern Blotting技术,对突变菌株BCt78进行分子鉴定.利用TAIL-PCR技术获得T-DNA插入位点的侧翼序列;将所获得侧翼序列与灰葡萄孢基因组数据库中的已知基因序列进行BLAST分析,推测出T-DNA的插入位点;通过PCR进一步验证T-DNA的插入位点,利用RT-PCR技术确定突变基因;最后对突变菌株的菌落形态、生长速度、胞壁降解酶活力、粗毒素的生物活性、对番茄叶片的致病能力及部分致病相关基因的表达情况进行研究.[结果]TAIL-PCR结果证实T-DNA插入到灰葡萄孢BCIG 12707.1基因的ATG起始密码子区;RT-PCR结果证实突变基因为BCIG_12707.1,该基因DNA全长为135 bp,编码一个44个氨基酸的假定蛋白(Hypothetical protein).突变菌株在PDA培养基上菌落呈灰白色,生长速度减慢,不能产生分生孢子及菌核;对番茄叶片的致病性增强,且胞壁降解酶(PG、PMG和Cx)活力增强;突变菌株中参与细胞壁降解的角质酶基因cutA和多聚半乳糖醛酸酶基因Bepg1,信号转导途径基因(PKA1、PKA2、Bac、Bmp3),产毒素基因BcBOT2(Sesquiterpene synthase),漆酶基因Lac1,跨膜蛋白基因Btp1表达都增强.[结论]BC1G_ 12707.1基因在灰葡萄孢分生孢子产生、菌核形成及致病力等方面起重要作用.  相似文献   

9.
冯晓菲  贡常委  王学贵 《菌物学报》2019,38(7):1033-1045
为明确四川省草莓灰葡萄孢Botrytis cinerea群体遗传结构及其多样性水平,采用ISSR分子标记技术对分离自四川省10个县(市)的195株灰葡萄孢菌进行了遗传多态性分析。结果表明,四川省灰葡萄孢菌多态性丰富,6条ISSR引物共产生了63个多态性位点,应用Popgene32软件计算四川省不同主产区域(除德阳广汉种群外)种群的Nei’s基因多样性指数(H)和Shannon信息指数(I)均达到了H>0.2、I>0.3的水平,表明四川省的灰葡萄孢菌具有丰富的遗传多样性;灰葡萄孢菌群体的遗传多样性(Ht)均值为0.2976,种群内遗传多样性(Hs=0.2458)远远高于种群间(Dst=0.0518)的遗传多样性;遗传分化系数(Gst)均值0.1742,基因流(Nm)均值2.3696,说明该地区灰葡萄孢菌种群间遗传分化不明显,群体内基因交流频繁。通过UPGMA法和Omishare Tools热图软件均可将10个采集点分为3个类群,来自绵阳江油的菌株单独构成一个类群,来自成都崇州和德阳广汉的菌株构成一个类群,其余的菌株构成另外一个类群;利用Structure 2.3软件对195份灰葡萄孢菌进行群体结构分析,可将134份菌株划分成21个群,另外61个菌株被列为混合群体。  相似文献   

10.
金城 《微生物学通报》2013,40(3):532-532
灰葡萄孢是一种重要的植物病原真菌,其寄主范围广泛,能危害世界上230多种双子叶植物,常给农业生产造成重大的经济损失[1-3].由灰葡萄孢引起的灰霉病是目前我国温室蔬菜生产中最主要的病害之一,一般造成全年减产20%-25%,严重时达到40%以上[4].因此,研究该病菌的致病机理对该病防治具有重要意义,并且随着灰葡萄孢基因组测序的完成,灰葡萄孢已成为发育生物学、分子植物病理学研究的模式生物之一.  相似文献   

11.
During pathogenesis, fungal pathogens are exposed to a variety of fungitoxic compounds. This may be particularly relevant to Botrytis cinerea, a plant pathogen that has a broad host range and, consequently, is subjected to exposure to many plant defense compounds. In practice, the pathogen is controlled with fungicides belonging to different chemical groups. ATP-binding cassette (ABC) transporters might provide protection against plant defense compounds and fungicides by ATP-driven efflux mechanisms. To test this hypothesis, we cloned BcatrB, an ABC transporter-encoding gene from B. cinerea. This gene encodes a 1,439 amino acid protein with nucleotide binding fold (NBF) and transmembrane (TM) domains in a [NBF-TM6]2 topology. The amino acid sequence has 31 to 67% identity with ABC transporters from various fungi. The expression of BcatrB is up regulated by treatment of B. cinerea germlings with the grapevine phytoalexin resveratrol and the fungicide fenpiclonil. BcatrB replacement mutants are not affected in saprophytic growth on different media but are more sensitive to resveratrol and fenpiclonil than the parental isolate. Furthermore, virulence of deltaBcatrB mutants on grapevine leaves was slightly reduced. These results indicate that BcatrB is a determinant in sensitivity of B. cinerea to plant defense compounds and fungicides.  相似文献   

12.
The somatic recombinogenic activity of the phenylpyrrole fungicide fludioxonil, in diploid Aspergillus nidulans was found similar to that caused by aromatic hydrocarbon and dicarboximide fungicides (AHDFs), such as iprodione, chlozolinate and tolclofos–methyl. All these fungicides not only increased the number of mitotic recombinants but also provided similar appearance, small sectors, of white and yellow mitotic recombination products. Fludioxonil highly resistant strains (resistant factor approximately 5000) of Botrytis cinerea were isolated at high frequency (1.08 × 10−5). Study of cross-resistance patterns of mutant strains to other fungicides, revealed cross-resistance of fludioxonil with dicarboximides (iprodione, procymidone, and chlozolinate) and aromatic hydrocarbons, such as tolclofos–methyl, pentachloronitrobenzene (PCNB), tecnazene and chloroneb. The positive cross-resistance relationships found between phenylpyrroles and members of the AHDFs and their ability to increase mitotic instability in diploid A. nidulans , indicate that phenylpyrroles should be included with AHDFs. A study of fitness parameters in wild-type and representative fludioxonil-resistant mutants of B. cinerea , showed that the mutation(s) leading to fludioxonil resistance may or may not affect some fitness-determining characteristics, such as sensitivity to high osmolarity, growth rate, conidial germination and germ-tube elongation. Pathogenicity tests on cucumber seedlings showed that an osmosensitive representative strain of B. cinerea , resistant to fludioxonil, was as virulent as the wild-type strain. The phenylpyrrole fungicide was ineffective, even in high concentrations, to control grey mould caused by this isolate.  相似文献   

13.
This study investigates on effects of four fungicide and six isolate from Trichoderma and Gliocladium on Botrytis cinerea agent grey mold of strawberry under library and greenhouse condition. The effect of four fungicides i.e. benomyl, dichlofluanid, captan and triadimenol on B. cinerea was studied in the laboratory condition by method mixed poison to culture medium. It was shown that the fungicide including benomyl, triadimenol, dichlofluanid and captan were able to inhibit mycelial growth of B. cinerea on PDA plate with EC50 of 0.16, 1.42, 3.40 and 7.73 ppm respectively. These fungicides delayed myceliogenic germination of sclerotia at 1000 ppm, while exhibiting no fungicidal effect. Moreover, the antagonistic effects of six fungi including Trichoderma koningii (T21), T. viride (T4), T. harzionum (T5), T. viride (T2), G. virens (G2), G. virens (G8) on B. cinerea were assessed. This assessment was done under library condition and its results as follows: The antagonistic mechanism occurred through branching at the end of B. cinerea hyphae, hyphal contact, coiling, vacuolization and lyses. Volatile metabolites of T. koningii (T21) and non-volatile metabolites of G. virens (G2 and G8) and T. koningii (T21) caused maximum inhibition of the fungal growth. Trichoderma spp and G. virens were able to colonize and sporulate on sclerotia and caused their lysis within 7-21 days. In greenhouse, a completely randomized design with 11 treatments (4 chemical and 6 biological and one untreated control) each replicated five times were used for the comparison. Greenhouse studies revealed that application of fungicides i.e. captan, dichlofluanid, triadimenol and benomyl reduces disease severity by 42, 45, 48 and 52% respectively. The fungal antagonists reduce the grey mold disease severity between 5-42%. All treatments caused a decline in post harvest disease, as the most effective treatment of chemical control was benomyl with 68.33% and for the biological treatment this was T. koningii (T21) with 56%.  相似文献   

14.
Signum, a new fungicide developed by BASF, was applied during 6 successive years against fungal diseases in strawberries. The product is formulated as a water dispersible granule, containing 6.7 % pyraclostrobin and 26.7 % boscalid. Pyraclostrobin is similar in chemistry to other strobilurin fungicides like kresoxim-methyl and trifloxystrobin, registered for fruit disease control. Boscalid belongs to the class of carboxyanilides. Both components in the premix formulation combine two different biochemical modes of action in the fungal cell respiration. Therefore, this co-formulation gives a broad-spectrum activity and also a reduced resistance risk for different target pathogens. Botrytis cinerea is the most important disease on strawberry-fruits and thus the control of fruit rot is mainly focused on this fungus. In average over 6 years, Signum has not only given a very good control against Botrytis fruit rot, but it has also shown a high performance in the control of Colletotrichum. Besides, Signum provides good control of powdery mildew (Podosphaera aphanis) and limits the shift to other fruit rots like leather rot (Phytophthora cactorum and leak (Rhizopus, Mucor). The availability of several categories of fungicide families with a different mode of action gives opportunities in alternating different fungicides and is the best guarantee for a sustainable control of fruit rot in all kinds of strawberry production methods. Signum should be integrated in an overall disease management program. Trials, in which the applications of Signum were timed on disease forecasting, based on environmental factors favorable for Botrytis development, were very promising. This tool can also help in establishing the IPM-concept in the production of strawberries.  相似文献   

15.
In tunnel experiments, the efficacy of dicarboximide sprays in controlling grey mould of strawberries was greatly decreased by the presence of dicarboximide-resistant forms of Botrytis cinerea. The use of dichlofluanid, as a tank-mix or in an alternating programme, with a dicarboximide fungicide, procymidone, helped to maintain the efficacy of disease control but failed to prevent an increase in the proportion of dicarboximide-resistant forms of the pathogen. Alternative ‘partner’ fungicides (thiram, chlorothalonil) delayed build-up of resistance to dicarboximides. Build-up of resistance was absent or relatively small in unsprayed plots. Application of dichlofluanid alone was always associated with a substantial increase in dicarboximide resistance, although less than in procymidone-treated plots. Monitoring dicarboximide resistance in the tunnels during the winter, when no further sprays were applied, revealed a gradual decline in the proportion of dicarboximide-resistant forms in all previously treated plots. In laboratory studies on inoculated leaf debris, dichlofluanid treatment induced the build-up of dicarboximide-resistant forms of B. cinerea. Leaf-disc tests revealed cross-resistance of dicarboximide-resistant isolates towards dichlofluanid but not towards thiram or chlorothalonil. Dichlofluanid is widely used for control of B. cinerea and the implications of these results for the practical management of dicarboximide resistance in this pathogen are discussed.  相似文献   

16.
Our objectives were to determine the (1) natural variation in fungicide resistance among Beauveria bassiana strains, (2) potential to increase fungicide resistance in B. bassiana through artificial selection, and (3) stability of virulence in selected B. bassiana strains. Fungicides included dodine, fenbuconazole, and triphenyltin hydroxide, which are commonly used in pecan and other horticultural crops. Comparison of seven B. bassiana strains indicated some are substantially more resistant to fungicides than others; a commercial strain (GHA) was less resistant than all wild strains isolated from pecan orchards. Artificial selection resulted in enhanced fungicide resistance in the GHA strain but not in a mixed wild strain. Removal of selection pressure for three passages did not reduce the enhanced fungicide resistance. Sub-culturing with exposure to fungicides did not affect the GHA strain's virulence to pecan weevil, Curculio caryae, larvae, whereas fungicide exposure increased virulence in a mixed wild population of B. bassiana.  相似文献   

17.
18.
Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure.  相似文献   

19.
Dicarboximides and phenylpyrroles are commonly used fungicides against plant pathogenic ascomycetes. Although their effect on fungal osmosensing systems has been shown in many studies, their modes-of-action still remain unclear. Laboratory- or field-mutants of fungi resistant to either or both fungicide categories generally harbour point mutations in the sensor histidine kinase of the osmotic signal transduction cascade.In the present study we compared the mechanisms of resistance to the dicarboximide iprodione and to pyrrolnitrin, a structural analogue of phenylpyrrole fungicides, in Botrytis cinerea. Pyrrolnitrin-induced mutants and iprodione-induced mutants of B. cinerea were produced in vitro. For the pyrrolnitrin-induced mutants, a high level of resistance to pyrrolnitrin was associated with a high level of resistance to iprodione. For the iprodione-induced mutants, the high level of resistance to iprodione generated variable levels of resistance to pyrrolnitrin and phenylpyrroles. All selected mutants showed hypersensitivity to high osmolarity and regardless of their resistance levels to phenylpyrroles, they showed strongly reduced fitness parameters (sporulation, mycelial growth, aggressiveness on plants) compared to the parental phenotypes. Most of the mutants presented modifications in the osmosensing class III histidine kinase affecting the HAMP domains. Site directed mutagenesis of the bos1 gene was applied to validate eight of the identified mutations. Structure modelling of the HAMP domains revealed that the replacements of hydrophobic residues within the HAMP domains generally affected their helical structure, probably abolishing signal transduction. Comparing mutant phenotypes to the HAMP structures, our study suggests that mutations perturbing helical structures of HAMP2-4 abolish signal-transduction leading to loss-of-function phenotype. The mutation of residues E529, M427, and T581, without consequences on HAMP structure, highlighted their involvement in signal transduction. E529 and M427 seem to be principally involved in osmotic signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号