首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.  相似文献   

2.
The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.Communicated by G. Antranikian  相似文献   

3.
Plant cell wall hydrolases generally have a modular structure consisting of a catalytic domain linked to one or more noncatalytic carbohydrate-binding modules (CBMs), whose common function is to attach the enzyme to the polymeric substrate. Xylanase A from Pseudomonas fluorescens subsp. cellulosa (Pf Xyn10A) consists of a family 10 catalytic domain, an N-terminal family IIa cellulose-binding module, and an internal family 10 cellulose-binding module. The structure of the 45-residue family 10 CBM has been determined in solution using NMR. It consists of two antiparallel beta-sheets, one with two strands and one with three, with a short alpha-helix across one face of the three-stranded sheet. There is a high density of aromatic residues on one side of the protein, including three aromatic residues (Tyr8, Trp22, and Trp24), which are exposed and form a flat surface on one face, in a classical polysaccharide-binding arrangement. The fold is closely similar to that of the oligonucleotide/oligosaccharide-binding (OB) fold, but appears to have arisen by convergent evolution, because there is no sequence similarity, and the presumed binding sites are on different faces.  相似文献   

4.
Clostridium josui xylanase Xyn10A is a modular enzyme comprising two family-22 carbohydrate-binding modules (CBMs), a family-10 catalytic module (CM), a family-9 CBM, and two S-layer homologous modules, consecutively from the N-terminus. To study the functions of the family-22 CBMs, truncated derivatives of Xyn10A were constructed: a recombinant CM polypeptide (rCM), a family-22 CBM polypeptide (rCBM), and a polypeptide composed of the family-22 CBMs and CM (rCBM-CM). Recombinant proteins were characterized by enzyme and binding assays. rCBM-CM showed the highest activity toward xylan and weak activity toward some polysaccharides such as barley beta-glucan and carboxymethyl-cellulose. Although rCBM showed an affinity for insoluble and soluble xylan as well as barley beta-glucan and Avicel in qualitative binding assays, removal of the CBMs negligibly affected the catalytic activity and thermostability of the CM.  相似文献   

5.
Xylanase Xyn10B from Clostridium thermocellum is a modular enzyme that contains two family 22 carbohydrate binding modules N- (CBM22-1) and C- (CBM22-2) terminal of the family 10 glycoside hydrolase catalytic domain (GH10). In a previous study, we showed that removal of CBM22-1 reduces the resistance to thermoinactivation of the enzyme suggesting that this module is a thermostabilizing domain. Here, we show that it is the module border on the N-terminal side of GH10 that confers resistance to thermoinactivation and to proteolysis. Therefore, CBM22-1 does not function as a thermostabilizing domain and the role for this apparently non-functional CBM remains elusive.  相似文献   

6.
The nucleotide sequence of the Clostridium josui FERM P-9684 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,150 bp and encodes 1,050 amino acids with a molecular weight of 115,564. Xyn10A is a multidomain enzyme composed of an N-terminal signal peptide and six domains in the following order: two thermostabilizing domains, a family 10 xylanase domain, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains. Immunological analysis indicated the presence of Xyn10A in the culture supernatant of C. josui FERM P-9684 and on the cell surface. The full-length Xyn10A expressed in a recombinant Escherichia coli strain bound to ball-milled cellulose (BMC) and the cell wall fragments of C. josui, indicating that both the CBM and the SLH domains are fully functional in the recombinant enzyme. An 85-kDa xylanase species derived from Xyn10A by partial proteolysis at the C-terminal side, most likely at the internal region of the CBM, retained the ability to bind to BMC. This observation suggests that the catalytic domain or the thermostabilizing domains are responsible for binding of the enzyme to BMC. Xyn10A-II, the 100-kDa derivative of Xyn10A, was purified from the recombinant E. coli strain and characterized. The enzyme was highly active toward xylan but not toward p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-cellobioside, or carboxymethylcellulose.  相似文献   

7.
Hydrolysis of arabinoxylan (AX) by glycoside hydrolase family 10 (GH10) xylanases produces xylo- and arabinoxylo-oligosaccharides ((A)XOS) which have shown prebiotic effects. The thermostable GH10 xylanase RmXyn10A has shown great potential to produce (A)XOS. In this study, the structure of RmXyn10A was investigated, the catalytic module by homology modelling and site-directed mutagenesis and the arrangement of its five domains by small-angle X-ray scattering (SAXS). Substrate specificity was explored in silico by manual docking and molecular dynamic simulations. It has been shown in the literature that the glycone subsites of GH10 xylanases are well conserved and our results suggest that RmXyn10A is no exception. The aglycone subsites are less investigated, and the modelled structure of RmXyn10A suggests that loop β6α6 in the aglycone part of the active site contains a non-conserved α-helix, which blocks the otherwise conserved space of subsite +2. This structural feature has only been observed for one other GH10 xylanase. In RmXyn10A, docking revealed two alternative binding regions, one on either side of the α-helix. However, only one was able to accommodate arabinose-substitutions and the mutation study suggests that the same region is responsible for binding XOS. Several non-conserved structural features are most likely to be responsible for providing affinity for arabinose-substitutions in subsites +1 and +2. The SAXS rigid model of the modular arrangement of RmXyn10A displays the catalytic module close to the cell-anchoring domain while the carbohydrate binding modules are further away, likely explaining the observed lack of contribution of the CBMs to activity.  相似文献   

8.
9.
Glycoside hydrolases often contain multiple copies of noncatalytic carbohydrate binding modules (CBMs) from the same or different families. Currently, the functional importance of this complex molecular architecture is unclear. To investigate the role of multiple CBMs in plant cell wall hydrolases, we have determined the polysaccharide binding properties of wild type and various derivatives of Cellulomonas fimi xylanase 11A (Cf Xyn11A). This protein, which binds to both cellulose and xylan, contains two family 2b CBMs that exhibit 70% sequence identity, one internal (CBM2b-1), which has previously been shown to bind specifically to xylan and the other at the C-terminus (CBM2b-2). Biochemical characterization of CBM2b-2 showed that the module bound to insoluble and soluble oat spelt xylan and xylohexaose with K(a) values of 5.6 x 10(4), 1.2 x 10(4), and 4.8 x 10(3) M(-1), respectively, but exhibited extremely weak affinity for cellohexaose (<10(2) M(-1)), and its interaction with insoluble cellulose was too weak to quantify. The CBM did not interact with soluble forms of other plant cell wall polysaccharides. The three-dimensional structure of CBM2b-2 was determined by NMR spectroscopy. The module has a twisted "beta-sandwich" architecture, and the two surface exposed tryptophans, Trp 570 and Trp 602, which are in a perpendicular orientation with each other, were shown to be essential for ligand binding. In addition, changing Arg 573 to glycine altered the polysaccharide binding specificity of the module from xylan to cellulose. These data demonstrate that the biochemical properties and tertiary structure of CBM2b-2 and CBM2b-1 are extremely similar. When CBM2b-1 and CBM2b-2 were incorporated into a single polypeptide chain, either in the full-length enzyme or an artificial construct comprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold increase in the affinity of the protein for soluble and insoluble xylan, as compared to the individual modules, and a measurable interaction with insoluble acid-swollen cellulose, although the K(a) (approximately 6.0 x 10(4) M(-1)) was still much lower than for insoluble xylan (K(a) = approximately 1.0 x 10(6) M(-1)). These data demonstrate that the two family 2b CBMs of Cf Xyn11A act in synergy to bind acid swollen cellulose and xylan. We propose that the increased affinity of glycoside hydrolases for polysaccharides, through the synergistic interactions of CBMs, provides an explanation for the duplication of CBMs from the same family in some prokaryotic cellulases and xylanases.  相似文献   

10.
The Clostridium stercorarium xylanase Xyn10B is a modular enzyme comprising two thermostabilizing domains, a family 10 catalytic domain of glycosyl hydrolases, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains [Biosci. Biotechnol. Biochem., 63, 1596-1604 (1999)]. To investigate the role of this CBM, we constructed two derivatives of Xyn10B and compared their hydrolytic activity toward xylan and some preparations of plant cell walls; Xyn10BdeltaCBM consists of a catalytic domain only, and Xyn10B-CBM comprises a catalytic domain and a CBM. Xyn10B-CBM bound to various insoluble polysaccharides including Avicel, acid-swollen cellulose, ball-milled chitin, Sephadex G-25, and amylose-resin. A cellulose binding assay in the presence of soluble saccharides suggested that the CBM of Xyn10B had an affinity for even monosaccharides such as glucose, galactose, xylose, mannose and ribose. Removal of the CBM from the enzyme negated its cellulose- and xylan-binding abilities and severely reduced its enzyme activity toward insoluble xylan and plant cell walls but not soluble xylan. These findings clearly indicated that the CBM of Xyn10B is important in the hydrolysis of insoluble xylan. This is the first report of a family 9 CBM with an affinity for insoluble xylan in addition to crystalline cellulose and the ability to increase hydrolytic activity toward insoluble xylan.  相似文献   

11.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

12.
Clostridium stercorarium Xyn10B having hydrolytic activities on xylan and beta-1,3-1,4-glucan is a modular enzyme composed of two family-22 carbohydrate-binding modules (CBMs), a family-10 catalytic module of the glycoside hydrolases, a family-9 CBM, and two S-layer homologous modules, consecutively from the N-terminus. We investigated the function of family-9 and family-22 CBMs in a modular enzyme by comparing the enzymatic properties of a truncated enzyme composed of two family-22 CBMs and the catalytic module (rCBM22-CM), an enzyme composed of the catalytic module and family-9 CBM (rCM-CBM9), an enzyme composed of two family-22 CBMs, the catalytic module, and family-9 CBM (rCBM22-CM-CBM9), and the catalytic module polypeptide (rCM). Although the addition of family-9 CBM to rCM and rCBM22-CM did not significantly change catalytic activity toward xylan and beta-1,3-1,4-glucan, the addition of family-22 CBM to rCM and rCM-CBM9 drastically enhanced catalytic activity toward xylan and especially beta-1,3-1,4-glucan. Furthermore, the addition of family-22 CBM to rCM and rCM-CBM9 shifted the optimum temperature from 65 degrees C to 75 degrees C, but that of family-9 CBM to rCM and rCBM22-CM did not affect the optimum temperature. These facts suggest that the enzyme properties of Xyn10B were mainly dependent on the presence of the family-22 CBMs but not family-9 CBM.  相似文献   

13.
Glucuronoxylanase Xyn30D is a modular enzyme containing a family 30 glycoside hydrolase catalytic domain and an attached carbohydrate binding module of the CBM35 family. We present here the three-dimensional structure of the full-length Xyn30D at 2.4 Å resolution. The catalytic domain folds into an (α/β)8 barrel with an associated β-structure, whereas the attached CBM35 displays a jellyroll β-sandwich including two calcium ions. Although both domains fold in an independent manner, the linker region makes polar interactions with the catalytic domain, allowing a moderate flexibility. The ancillary Xyn30D-CBM35 domain has been expressed and crystallized, and its binding abilities have been investigated by soaking experiments. Only glucuronic acid-containing ligands produced complexes, and their structures have been solved. A calcium-dependent glucuronic acid binding site shows distinctive structural features as compared with other uronic acid-specific CBM35s, because the presence of two aromatic residues delineates a wider pocket. The nonconserved Glu129 makes a bidentate link to calcium and defines region E, previously identified as specificity hot spot. The molecular surface of Xyn30D-CBM35 shows a unique stretch of negative charge distribution extending from its binding pocket that might indicate some oriented interaction with its target substrate. The binding ability of Xyn30D-CBM35 to different xylans was analyzed by affinity gel electrophoresis. Some binding was observed with rye glucuronoarabinoxylan in presence of calcium chelating EDTA, which would indicate that Xyn30D-CBM35 might establish interaction to other components of xylan, such as arabinose decorations of glucuronoarabinoxylan. A role in depolymerization of highly substituted chemically complex xylans is proposed.  相似文献   

14.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   

15.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

16.
The rumen bacterium Pseudobutyrivibrio xylanivorans Mz5T has a potent xylanolytic enzyme system. A small native peptide (approximately 30-kDa, designated Xyn11A) from the bacterium was first isolated and characterized by Edman degradation. The gene coding for Xyn11A was identified using PCR amplification with consensus primers. It was then fully sequenced to reveal an open reading frame of 1809 bp. The predicted N-terminal domain exhibited xylanolytic activity and was classed to the family 11 of glycosyl hydrolases; it is followed by a region with homology to a family 6 cellulose binding module. The C-terminal domain codes for a putative NodB-like polysaccharide deacetylase which is predicted to be an acetyl esterase implicated in debranching activity in the xylan backbone. As similar domain organization was also found in several other xylanases from a diverse range of bacteria, a common ancestor of such a xylanase is considered to be present and spread, possibly by horizontal gene transfer, to other microorganisms from different ecological niches.  相似文献   

17.
Xyn30D from the xylanolytic strain Paenibacillus barcinonensis has been identified and characterized. The enzyme shows a modular structure comprising a catalytic module family 30 (GH30) and a carbohydrate-binding module family 35 (CBM35). Like GH30 xylanases, recombinant Xyn30D efficiently hydrolyzed glucuronoxylans and methyl-glucuronic acid branched xylooligosaccharides but showed no catalytic activity on arabinose-substituted xylans. Kinetic parameters of Xyn30D were determined on beechwood xylan, showing a K(m) of 14.72 mg/ml and a k(cat) value of 1,510 min(-1). The multidomain structure of Xyn30D clearly distinguishes it from the GH30 xylanases characterized to date, which are single-domain enzymes. The modules of the enzyme were individually expressed in a recombinant host and characterized. The isolated GH30 catalytic module showed specific activity, mode of action on xylan, and kinetic parameters that were similar to those of the full-length enzyme. Computer modeling of the three-dimensional structure of Xyn30D showed that the catalytic module is comprised of a common (β/α)(8) barrel linked to a side-associated β-structure. Several derivatives of the catalytic module with decreasing deletions of this associated structure were constructed. None of them showed catalytic activity, indicating the importance of the side β-structure in the catalysis of Xyn30D. Binding properties of the isolated carbohydrate-binding module were analyzed by affinity gel electrophoresis, which showed that the CBM35 of the enzyme binds to soluble glucuronoxylans and arabinoxylans. Analysis by isothermal titration calorimetry showed that CBM35 binds to glucuronic acid and requires calcium ions for binding. Occurrence of a CBM35 in a glucuronoxylan-specific xylanase is a differential trait of the enzyme characterized.  相似文献   

18.
Cellulase Cel5A from alkalophilic Bacillus sp. 1139 contains a family 17 carbohydrate-binding module (BspCBM17) and a family 28 CBM (BspCBM28) in tandem. The two modules have significantly similar amino acid sequences, but amino acid residues essential for binding are not conserved. BspCBM28 was obtained as a discrete polypeptide by engineering the cel5A gene. BspCBM17 could not be obtained as a discrete polypeptide, so a family 17 CBM from endoglucanase Cel5A of Clostridium cellulovorans, CcCBM17, was used to compare the binding characteristics of the two families of CBM. Both CcCBM17 and BspCBM28 recognized two classes of binding sites on amorphous cellulose: a high affinity site (K(a) approximately 1 x 10(6) M(-1)) and a low affinity site (K(a) approximately 2 x 10(4) M(-1)). They did not compete for binding to the high affinity sites, suggesting that they bound at different sites on the cellulose. A polypeptide, BspCBM17/CBM28, comprising the tandem CBMs from Cel5A, bound to amorphous cellulose with a significantly higher affinity than the sum of the affinities of CcCBM17 and BspCBM28, indicating cooperativity between the linked CBMs. Cel5A mutants were constructed that were defective in one or both of the CBMs. The mutants differed from the wild-type enzyme in the amounts and sizes of the soluble products produced from amorphous cellulose. This suggests that either the CBMs can modify the action of the catalytic module of Cel5A or that they target the enzyme to areas of the cellulose that differ in susceptibility to hydrolysis.  相似文献   

19.
木聚糖酶碳水化合物结合结构域研究进展   总被引:3,自引:0,他引:3  
木聚糖酶含有催化活性结构域,有时还含有非催化活性结构域,促进酶与底物结合,特别是与不溶性底物的结合及降解,称为碳水化合物结合结构域(CBM),它们在木聚糖降解过程中有重要作用。以下从CBM来源,所属家族类型、对不溶性底物结合特性、与底物结合的特定氨基酸、与催化结构域间的连接肽、特别是对影响木聚糖酶稳定性的5个方面进行了综述,说明CBM对木聚糖酶性质有很大影响。自然界中碳水化合物结构复杂、难以降解,所以认识CBM相关性质对研究其与木聚糖酶的协同作用、提高木聚糖酶活性有重要意义,并根据CBM属性用于改造木聚糖酶相关性质进行了展望。  相似文献   

20.
Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号