首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of water activity on the rate of thermolysin-catalyzed synthesis of an aspartame precursor has been investigated in water-miscible and water-immiscible solvents. In both cases, the enzyme reaction rate at a given water activity was found to be significantly different depending on the nature of the solvent. The reaction rates in water-immiscible solvents, where the water activities were close to 1.0, were found to be significantly dependent on the volume ratio of water to organic media and the hydrophobicity of the solvent. These data suggest that the enzyme reaction in the solvent is influenced appreciably by other factors in addition to the water activity.  相似文献   

2.
The activity of two proteases in the esterification of N-acetyl-L-phenylalanine with ethanol was examined in the water-miscible ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][Tf]). The activity of subtilisin was not only improved 9-fold by changing from a water-miscible organic solvent, acetonitrile, to [emim][Tf], but also was about three times greater than that in a water-immiscible organic solvent, octane. Likewise, the activity of alpha-chymotrypsin in [emim][Tf] was more effectively enhanced compared with that in a water-miscible or a water-immiscible organic solvent. The water content in [emim][Tf] affected the activity of subtilisin.  相似文献   

3.
Two different water-immiscible ionic liquids (ILs), 1-ethyl-3-methylimidizolium bis(trifluoromethylsulfonyl)imide and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, were used for butyl butyrate synthesis from vinyl butyrate catalyzed by Candida antarctica lipase B (CALB) at 2% (v/v) water content and 50 degrees C. Both the synthetic activity and stability of the enzyme in these ILs were enhanced as compared to those in hexane. Circular dichroism and intrinsic fluorescence spectroscopic techniques have been used over a period of 4 days to determine structural changes in the enzyme associated with differences in its stability for each assayed medium. CALB showed a loss in residual activity higher than 75% after 4 days of incubation in both water and hexane media at 50 degrees C, being related to great changes in both alpha-helix and beta-strand secondary structures. The stabilization of CALB, which was observed in the two ILs studied, was associated with both the maintenance of the 50% of initial alpha-helix content and the enhancement of beta-strands. Furthermore, intrinsic fluorescence studies clearly showed how a classical enzyme unfolding was occurring with time in both water and hexane media. However, the structural changes associated with the incubation of the enzyme in both ILs might be attributed to a compact and active enzyme conformation, resulting in an enhancement of the stability in these nonaqueous environments.  相似文献   

4.
The effects of organic solvents on the penicillin acylase-catalyzed, kinetically controlled synthesis of cefazolin have been examined in various water–solvent mixtures. In the presence of water-miscible solvents, the initial rate and maximum yield of cefazolin (CEZ) synthesis reaction were found to be reduced. The extent of inhibition was increased with increasing hydrophobicity of the solvent in the reaction mixtures. Enzymatic synthesis of cefazolin was also carried out in the water–solvent biphasic systems. Among the water-immiscible solvents tested, ethyl acetate (EtOAc) and carbon tetrachloride (CCl4) were found to markedly improve the yield of cefazolin in the two-phase reaction system. Our study showed that the enhancement effect of EtOAc and CCl4 on the synthetic yield was mainly caused by a reduction of the hydrolysis of acyl donor and product in the two-phase system rather than extraction of the product into the solvent phase.  相似文献   

5.
Five different ionic liquids (ILs) based on quaternary ammonium cations, with functional side chains ((3-hydroxypropyl)-trimethyl-, (3-cyanopropyl)-trimethyl-, butyl-trimethyl-, (5-cyanopentyl)-trimethyl- and hexyl-trimethyl-) associated with the same anion (bis(trifluoromethane)sulfonyl amide)), were synthesized, and their suitability for Candida antarctica lipase B (CALB)-catalyzed ester synthesis in IL/supercritical carbon dioxide (scCO(2)) biphasic systems was assayed. Catalytic efficiency of the system has been analyzed as a function of both enzyme properties and mass-transfer phenomena criteria. First, the suitability of these ILs as enzymic reaction media was tested for the kinetic resolution of rac-phenylethanol. All ILs were found to be suitable media for enzyme catalysis, the best catalytic parameter (5.3 U/mg specific activity, 94.9% selectivity) being obtained for the (5-cyanopentyl)-trimethylammonium. Second, enzyme stability in all of the ILs was studied at 50 degrees C over a period of 50 days, and data were analyzed by a two-step kinetic deactivation model. All of the ILs were shown to act as stabilizing agents with respect to hexane, producing an increase in the free energy of deactivation (to 25 kJ/mol protein) and an improvement in the half-life time of the enzyme (2000-fold), which agrees with the observed increased hydrophobicity of the cation alkyl side chain (measured by Hansen's solubility parameter, delta). By using two different CALB-IL systems with different hydrophobicity in the cation, continuous processes to synthesize six different short chain alkyl esters (butyl acetate, butyl propionate, butyl butyrate, hexyl propionate, hexyl butyrate, and octyl propionate) in scCO(2) at 10 MPa and 50 degrees C were carried out. Both rate-limiting parameters (synthetic activity and scCO(2)-ILs mass-transfer phenomena) were related with the delta-parameter of the ILs-alkyl chain and reagents.  相似文献   

6.
Esterification of N-acetyl phenylalanine with ethanol catalyzed by immobilized α-chymotrypsin (EC 3.4.21.1) was studied in various reaction media. The effect of reaction medium polarity on enzymatic activity as well as equilibrium yield was measured. The reaction rate increased with increasing amounts of added water, reaching an optimum corresponding to water saturation of the reaction medium. Further additions of water resulted in decreased activity. Bell-shaped activity profiles were obtained for all reaction media tested. Reaction media consisting of pure solvents and of mixtures of solvents were used. The enzymatic activity and the equilibrium yield increased with decreased polarity of the medium. Maximum activity was found in a reaction medium consisting of 80% diisopropyl ether and 20% heptane. The enzymatic activity obtained at optimal water additions in the different solvents and solvents mixtures could be correlated to the solubility of water and the log P of the medium. The equilibrium yield of the reaction was much more closely correlated to the solubility of water than the log P. Much lower enzymatic activity was obtained when solvent mixtures producing water-miscible media were created, than in mixtures producing water-immiscible media, such as mixtures of acetonitrile and diisopropyl ether. The equilibrium yield could be increased by decreasing the water content in the reaction medium, which reduced the water activity.  相似文献   

7.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient. Offprint requests to: F. Monot  相似文献   

8.
《Process Biochemistry》2010,45(12):1899-1903
Biobutanol has currently attracted considerable attention as an alternative biofuel to the petroleum-derived fuel due to several advantages including high energy content, low water absorption and easy application to the existing gasoline infrastructure. However, its production has still faced many obstacles to overcome including lack of energy-efficient butanol separation process from fermentation broth. To solve this issue, the extraction behavior of butanol from aqueous media into a variety of imidazolium-based ionic liquids (ILs) was investigated by liquid–liquid extraction. To understand the effect of ILs properties, the solvent characteristics of ILs such as mutual solubility of feed solvent (water) and extraction solvent (IL), distribution coefficient of butanol between water and IL, selectivity, and extraction efficiency were correlated with hydrophobicity and polarity of ILs. The butanol distribution between ILs and water strongly depends on the hydrophobicity of anions of ILs followed by the hydrophobicity of cations of ILs. On the other hand, butanol extraction efficiency and selectivity depend on the polarity of ILs. Considering extraction efficiency and selectivity, [Tf2N]-based ILs among the tested ILs showed to be the best extract solvent for the recovery of butanol from aqueous media. Among the studied ILs, [Omim][Tf2N] showed the highest butanol distribution coefficient (1.939), selectivity (132) and extraction efficiency (74%) at 323.15 K, respectively.  相似文献   

9.
Four different ionic liquids, based on dialkylimidazolium cations associated with perfluorinated and bis(trifluoromethyl)sulfonyl amide anions were used as reaction media for butyl butyrate synthesis catalyzed by free Candida antarctica lipase B at 2% (v/v) water content and 50 °C. Lipase had enhanced synthetic activity in all ionic liquids in comparison with two organic solvents (hexane, and 1-butanol), the enhanced activity being related to the increase in polarity of ionic liquids. The continuous operation of lipase with all the assayed ionic liquids showed over-stabilization of the enzyme. The reuse of free lipase in 1-butyl-3-methylimidazolium hexafluorophosphate in continuous operation cycles showed a half-life time 2300 times greater than that observed when the enzyme was incubated in the absence of substrate (3.2 h), and a selectivity higher than 90%.  相似文献   

10.
Summary Polyethylene glycol-modified enzymes dissolved and had high enzymic activity in organic solvents. A trace amount of water was found to be necessary for the activity. It was reasoned that the amphipathic polymer covalently attached to enzymes kept water molecules around them. This was supported by findings that : (1) high enzymic activity was found in water- immiscible solvents, whereas activity was never observed in water-miscible solvents; (2) enzymic activity was inhibited by increasing the concentration of dimethyl sulfoxide in benzene; (3) activity of lipase was inhibited by a water-miscible alcohol substrate, but was steadily elevated by increasing the concentration of a water-immiscible alcohol substrate; (4) water was not absorbed from benzene solution containing a modified enzyme by molecular sieves, while it was easily absorbed in the presence of a water-miscible organic solvent, dimethyl sulfoxide.  相似文献   

11.
Subtilisin Carlsberg, an alkaline protease from Bacillus licheniformis, was modified with polyoxyethylene (PEG) or aerosol-OT (AOT), and the solubility, conformation, and catalytic activity of the modified subtilisins in some organic media were compared under the same conditions. The solubility of modified subtilisins depended on the solubility of the modifier. On the other hand, the conformational changes depended on the solubility, rather than the property, of the modifier. When the modified subtilisin was dissolved in water-miscible polar solvents such as dimethylsulfoxide, acetonitrile, and tetrahydrofuran, significant conformational changes occurred. When modified subtilisin was dissolved in water-immiscible organic solvents, such as isooctane and benzene, the solvent did not induce significant conformational changes. The catalytic activity in the transesterification reaction of the N-acetyl-L-phenylalanine ethylester of the modified subtilisin in organic solvents was higher than that of native subtilisin. The high activity of modified subtilisin was thought to be due to a homogeneous reaction by the dissolved enzymes.  相似文献   

12.
Design of enzymatic kyotorphin synthesis in low water media has been carried out as a function of enzyme nature, the immobilization support material and the reaction medium, by using N-benzoyl-L-tyrosine ethyl ester and L-argininamide as substrates. Native and chemically-glycated alpha-chymotrypsin deposited on supports with different degrees of aquaphilicity (celite, polypropylene PP, and polyamide PA6) were used as catalysts. Binary organic solvent systems of ethanol and different water-immiscible organic cosolvents (ethylacetate, tert-butanol, chloroform, toluene, n-hexane, and n-octane) were studied as reaction media at constant water content (3% v/v). The greater the water binding affinity of the support the lower the synthetic activity of deposited enzymes: the activity of the celite derivative was 4x greater than the polyamide derivative. The enzyme glycation process hardly modified the catalytic ability of the celite derivative, but resulted in a moderate increase in operational stability. The presence of hydrophobic organic cosolvents in the water/ethanol reaction medium significantly increased enzyme activity, whereas the selectivity of the reaction remained high. Hexane was shown to be the best cosolvent, the synthetic activity of the celite derivative in hexane-ethanol (77 : 20%, v/v) being 130x greater than that in 97% (v/v) ethanol.  相似文献   

13.
The question of whether the solvent's water-immiscibility is relevant to enzymatic activity was addressed by assaying four different hydrolases (three lipases and one protease) in nine anhydrous solvents of similar hydrophobicities of which four were infinitely miscible with water and five were not. For no enzyme was a jump in activity observed upon a transition from water-miscible to water-immiscible solvent. The relevance of solvent apolarity to enzymatic efficiency was also examined. To this end, three groups of isomeric anhydrous solvents were selected where within each group of isomeric anhydrous solvents were selected where within each group one solvent was apolar (i.e., lacked a permanent dipole moment). For none of the four enzymes studied was activity significantly higher in apolar solvents than in their polar counterparts. Thus we conclude that often-cited solvent's immiscibility with water and apolarity by themselves are irrelevant to enzymatic activity. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Peptide synthesis was carried out in a variety of organic solvents with low contents of water. The enzyme was deposited on the support material, celite, from an aqueous buffer solution. After evaporation of the water the biocatalyst was suspended in the reaction mixtures. The chymotrypsin-catalyzed reaction between Z-Phe-OMe and Leu-NH2 was used as a model reaction. Under the conditions used ([Z-Phe-OMe]0 less than or equal to 40 mM, [Leu-NH2]0/([Z-Phe-OMe]0 = 1.5) the reaction was first order with respect to Z-Phe-OMe. Tris buffer, pH 7.8, was the best buffer to use in the preparation of the biocatalyst. In water-miscible solvents the reaction rate increased with increasing water content, but the final yield of peptide decreased due to the competing hydrolysis of Z-Phe-OMe. Among the water-miscible solvents, acetonitrile was the most suitable, giving 91% yield with 4% (by vol.) water. In water-immiscible solvents the reaction rate and the product distribution were little affected by water additions in the range between 0% and 2% (vol. %) in excess of water saturation. The reaction rates correlated well with the log P values of the solvent. The highest yield (93%) was obtained in ethyl acetate; in this solvent the reaction was also fast. Under most reaction conditions used the reaction product was stable; secondary hydrolysis of the peptide formed was normally negligible. The method presented is a combination of kinetically controlled peptide synthesis (giving high reaction rates) and thermodynamically controlled peptide synthesis (giving stable reaction products).  相似文献   

15.
PPL-catalyzed synthesis of the precursor dipeptides of RGD as a cellular adhesion factor, Benzyl-Arg-Gly-NH2 and CBZ-Gly-Asp-NH2, was conducted in water-organic cosolvents systems. Five water-miscible organic solvents, which have some advantage over the water-immiscible organic solvent systems or the anhydrous organic solvent systems used often in protease-catalyzed synthesis of a peptide bond, were tested. The reaction condition of PPL-catalyzed synthesis of the dipeptides was optimized by examining the main factors affecting the product yield. The optimal reaction condition for the synthesis of Benzyl-Arg-Gly-NH2 was set up as pH 8.0, 15 degrees C in 40% MeOH for 10 h with the maximum yield of 73.6%. The optimum condition for the synthesis of CBZ-Gly-Asp-NH2 was pH 7.0, 15 degrees C in 50% MeOH for 10h with the maximum yield of 67.0%.  相似文献   

16.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

17.
Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL‐IM was performed. n‐Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 24–1, the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n‐hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n‐hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1416–1421, 2013  相似文献   

18.
Abstract

Novozyme 435 could catalyze efficient acylation of 3-n-butylphthalide in organic medium. The conversion of 3-n-butylphthalide increased with the increase of hydrophobicity of solvent below that of hexane. The more available solvent was hexane. Salt hydride could control fixed water activity. The optimum water activity was 0.62. And the optimum of reaction time, velocity of agitation, dosage of Novozyme 435 and acetic anhydride to 3-n-butylphtrhalide molar ratio were 48 hours, 150 rpm, 8 mg/mL and 8:1, respectively. The conversion of 48.9% could be obtained at a water activity of 0.62 in hexane. Furthermore, Novozyme 435 had an enantioselective acylation of racemic 3-n-butylphthalide by original analysis.  相似文献   

19.
Immobilized a-chymotrypsin was used as catalyst for studying temperature effects on acyl transfer reactions (acyl-donor: Bz-TyrOEt) in a water-immiscible organic solvent. The solubility of the two nucleophiles, Phe-NH and water, decreased with decreasing temperature. The relative decrease for the amide was larger (2.4-fold) than for water. Therefore the thermodynamic activity (estimated by the relative saturation) increased more for this substrate and hence the selectivity in the reaction was increased.  相似文献   

20.
Novozyme 435 could catalyze efficient acylation of 3-n-butylphthalide in organic medium. The conversion of 3-n-butylphthalide increased with the increase of hydrophobicity of solvent below that of hexane. The more available solvent was hexane. Salt hydride could control fixed water activity. The optimum water activity was 0.62. And the optimum of reaction time, velocity of agitation, dosage of Novozyme 435 and acetic anhydride to 3-n-butylphtrhalide molar ratio were 48 hours, 150 rpm, 8 mg/mL and 8:1, respectively. The conversion of 48.9% could be obtained at a water activity of 0.62 in hexane. Furthermore, Novozyme 435 had an enantioselective acylation of racemic 3-n-butylphthalide by original analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号