首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The view of (insect) populations as assemblages of local subpopulations connected by gene flow is gaining ground. In such structured populations, local adaptation may occur. In phytophagous insects, one way in which local adaptation has been demonstrated is by performing reciprocal transplant experiments where performance of insects on native and novel host plants are compared. Trade-offs are assumed to be responsible for a negative correlation in performance on alternative host plants. Due to mixed results of these experiments, the importance of trade-offs in host plant use of phytophagous insects has been under discussion. Here we propose that another genetic mechanism, the evolution of coadapted gene complexes, might also be associated with local adaptation. In this case, however, transplant experiments might not reveal any local adaptation until hybridization takes place. We review the results we have obtained in our work on the host plant use of the flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae), and propose a hypothesis involving coadapted genes to explain the distribution of genes that render P. nemorum resistant to defences of one of its host plants, Barbarea vulgaris R. Br. (Cruciferae).  相似文献   

2.
The spatial arrangement of suitable host plants in the field may significantly constrain insects to find optimal hosts. Plant neighbours around a focal host plant can either lead to lower (associational resistance) or higher (associational susceptibility) herbivore loads. We tested whether the spatial arrangement of hosts of different suitability for the larval development of the shoot-base boring weevil Apion onopordi affects oviposition decisions in the field. Host plants in our study were healthy creeping thistles (Cirsium arvense; suboptimal hosts) and thistles infected by a rust pathogen (Puccinia punctiformis; optimal hosts). For analysis, we used nearest neighbour methods that disentangle the spatial distribution of organisms that are dependent on the position of other species (e.g. phytophagous insects and their host plants). Although theory predicts that the small-scale spatial infestation pattern can have major consequences for the population dynamics in insect–plant systems, field studies quantifying spatial pattern of phytophagous insects are rare.

The spatial arrangement of host plants clearly influenced oviposition pattern in A. onopordi. In contrast to previous studies, we demonstrated that not the rust infection itself determined if a plant was infested by weevils, but rather the density of rusted shoots within a certain neighbourhood. We found strong indications for associational susceptibility of healthy thistle shoots to weevil oviposition when growing in the neighbourhood of rusted thistles. Weevil-infested plants were spatially aggregated, indicating that A. onopordi is limited in its dispersal ability within patches. Other stem-boring insects on creeping thistle were affected in their oviposition decisions by other factors than A. onopordi. Thus, it may be difficult to find general rules for oviposition choice in phytophagous insects.

Our study showed that the spatial arrangement of host plants in the field critically determines oviposition choice and should thus be included as constraint in theories of optimal host selection.  相似文献   


3.
Host plants are the most critical environmental factor for phytophagous arthropods. Adaptation to a novel host will alter the distributional range of an herbivore to include the area the novel host covers, and might promote divergence between populations utilizing the old and new hosts. On the Oshima Peninsula, Hokkaido Island, northern Japan, the ladybird beetle Henosepilachna niponica (Lewis) (Coleoptera: Coccinellidae) usually occurs exclusively on the thistle Cirsium alpicola Nakai (Asteraceae), which is distributed in the southernmost part of the island, although some other Cirsium species often grow in sympatry. At least at one site (Assabu), however, H. niponica depends on another thistle, Cirsium grayanum (Maxim.) Nakai, the most abundant and widely distributed thistle species on the Oshima Peninsula. We examined adult feeding acceptance and preference, and larval performance, in two populations of H. niponica that utilize different species of thistles (the Assabu population occurs on C. grayanum; the Shiriuchi population, on C. alpicola) by testing three kinds of thistles (C. grayanum from Assabu, C. grayanum from Shiriuchi, and C. alpicola from Shiriuchi). Results strongly suggested that among the three plants tested, C. grayanum from Assabu was the most suitable host for H. niponica. We concluded that local differences in C. grayanum mainly explain why it is not used at Shiriuchi, but that there are also local differences in host use among the beetle populations, suggesting some degree of local adaptation. This suggests that different selective regimes associated with different host plants might promote divergence among beetle populations. We conclude that H. niponica is at present unlikely to expand its range to the whole range of C. grayanum.  相似文献   

4.
1. Relatively few studies of the host‐finding ability of specialised, phytophagous insects involve direct observations of individual insects moving among intact hosts and non‐hosts. Information from such studies can inform the design of restoration programmes for species of conservation concern. 2. The movement of caterpillars of the threatened Oregon silverspot butterfly, Speyeria zerene hippolyta (Edwards) (Lepidoptera: Nymphalidae) was studied in the field in cleared arenas with 10 cm radii. Caterpillars were placed in the centre, surrounded by three individuals of their host, Viola adunca, and three different non‐host individuals, separated by bare ground. In a second experiment, second instars were placed between a host and a non‐host, 3–6 cm away. Caterpillars were observed to determine if they walked to their host more often than expected by chance. 3. Caterpillars walked to vegetation significantly more often than expected by chance. They did not, however, reach their hosts more often than expected, based on plant availability. 4. It is concluded that S. z. hippolyta caterpillars can distinguish vegetation from bare ground from 10 cm away. There is no evidence that they can distinguish their host plant from other herbaceous species at distances of 3 cm.  相似文献   

5.
Several studies have documented local adaptation by sedentary insects to individual phenotypes of their host plants. Here, I examined whether a similar phenomenon could be found in a mobile, specialized insect, the sumac flea beetle. Previous work has shown that sumac individuals differ in their suitability as hosts for these beetles and that differences have both an environmental and a genetic basis. Using beetle populations collected as eggs from eight different sumac clones along an east-west transect, a reciprocal transfer experiment was conducted to determine whether there was any evidence for local adaptation by beetles to individual plant clones or to site. Variables examined were larval survivorship past first instar, development time, weight at pupation and patterns of predation by enemies. While no evidence for local adaptation was found, there were significant effects of plant clone on which larvae developed, origin of the larval population and the interaction of these effects on larval performance. For larval weight at pupation, there was also some indication that trade-offs may exist in ability of larvae to use different host plant clones. In addition, there were significant environmental effects on several measures of larval performance. Predation rates differed by plant clone, but not by site or with respect to origin of larvae. While no evidence for local adaptation was found in this study, prerequisites for finding such patterns may exist in this system. Received: 23 May 1996 / Accepted: 26 September 1996  相似文献   

6.
Butterfly Host Plant Choice in the Face of Possible Confusion   总被引:6,自引:0,他引:6  
We tested predictions from the theory that ovipositing females of phytophagous insects are limited by their neural capacity for information processing. Previous studies have found that relatively specialized insects make faster and/or more accurate identifications of host plants compared to generalists. The study species was the polyphagous comma butterfly, Polygonia c-album (Nymphalidae). We compared females originating from two populations (Sweden and England) which differ in degree of specialization on the preferred host Urtica dioica (Urticaceae). Females were given a choice between this plant and a very similar nonhost, white dead nettle, Laminum album (Lamiacease), or a choice between a relatively poor host, Betuala pubescens, and the nonhost Betula pendula (Betulaceae). Oviposition rate was lower in cages with Betula compared to cages with Urtica, demonstrating that P. c-album females will withhold eggs when preferred hosts are not available. As predicted, females originating from the Swedish generalist population oviposited more often on the nonhost Lamium. However, females of both populations discriminated very strongly against oviposition on B. pendula. We found that newly hatched larvae have some ability to move from herbaceous nonhost to hosts. Although alternative interpretations are possible, the results give further support to the hypothesis that there are trade-offs between diet breadth and the ability to discriminate among plants.  相似文献   

7.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

8.
Abstract Sucking insects constituted 79% of all phytophagous insects collected from woody sprouts in the ground layer of a tropical eucalypt forest. Mobile insect groups such as non-psyllid Hemiptera and Orthoptera were relatively frequent in this environment compared to temperate, Eucalyptus-dominated vegetation. The high fire frequency of the tropical eucalypt forest may favour mobile insect groups. The capture of sucking insects and caterpillars peaked in dry season samples. Other patterns of abundance of phytophagous insect groups showed little consistency in their seasonal trends between host species or between vegetation types within host species. Disparities between chewing insect abundance in daytime samples and the damage chewing insects cause, may result from disproportionate consumption by large, mainly nocturnal insects, such as members of the Orthoptera. In this study, 21% of insect species were specialists on single plant species. This study suggested that insect abundance reflected the growth patterns of woody sprouts after regular burning, rather than that plant growth and development were tuned to the pressures of insect herbivory.  相似文献   

9.
Climate adaptation has major consequences in the evolution and ecology of all living organisms. Though phytophagous insects are an important component of Earth's biodiversity, there are few studies investigating the evolution of their climatic preferences. This lack of research is probably because their evolutionary ecology is thought to be primarily driven by their interactions with their host plants. Here, we use a robust phylogenetic framework and species‐level distribution data for the conifer‐feeding aphid genus Cinara to investigate the role of climatic adaptation in the diversity and distribution patterns of these host‐specialized insects. Insect climate niches were reconstructed at a macroevolutionary scale, highlighting that climate niche tolerance is evolutionarily labile, with closely related species exhibiting strong climatic disparities. This result may suggest repeated climate niche differentiation during the evolutionary diversification of Cinara. Alternatively, it may merely reflect the use of host plants that occur in disparate climatic zones, and thus, in reality the aphid species' fundamental climate niches may actually be similar but broad. Comparisons of the aphids' current climate niches with those of their hosts show that most Cinara species occupy the full range of the climatic tolerance exhibited by their set of host plants, corroborating the hypothesis that the observed disparity in Cinara species' climate niches can simply mirror that of their hosts. However, 29% of the studied species only occupy a subset of their hosts' climatic zone, suggesting that some aphid species do indeed have their own climatic limitations. Our results suggest that in host‐specialized phytophagous insects, host associations cannot always adequately describe insect niches and abiotic factors must be taken into account.  相似文献   

10.
The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co‐evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.  相似文献   

11.
Host plant cues are known to shape insect–host plant association in many insect groups. More pronounced associations are generally manifested in specialist herbivores, but little is known in generalist herbivores. We used a polyphagous native beetle from New Zealand, bronze beetle, Eucolaspis sp. ‘Hawkes Bay’ (Chrysomelidae: Eumolpinae) to explore the role of olfaction in locating host plants and local adaptation. We also tested the role of other cues in the degree of acceptance or rejection of hosts. Adult Eucolaspis beetles were attracted to fresh leaf volatiles from apple and blackberry (Rosaceae). Male and female beetles responded similarly to olfactory cues of host plants. An indication of evolutionary affiliation was observed in olfactory preferences of geographically isolated conspecific populations. We found that geographically isolated populations of the beetles differ in their olfactory responses and exhibit some degree of local adaptation. However, irrespective of geographical and ecological associations, blackberry was preferred over apple as a feeding plant, and another novel plant, bush lawyer (Rubus australis), was readily accepted by 53.25% of the tested beetles. We show that plant volatiles play an important role in host location by Eucolaspis, but the acceptance or rejection of a particular host could also involve visual and contact cues.  相似文献   

12.
Local adaptation has often been documented in herbivorous insects. The potential for local maladaptation in phytophagous insects, however, has not been widely considered. I performed a two-generation reciprocal cross-transplant experiment with the generalist soft scale insect Saissetia coffeae (Hemiptera: Coccidae) on two common species of host plants in rain forest habitat in Costa Rica. In this system, S. coffeae showed significant local maladaptation at the level of the host species. Lineages originally collected from Witheringia enjoyed a strong advantage over those collected from Lomariopsis when both sets of lineages were placed on Lomariopsis; however, when both sets of lineages were raised on Witheringia, their fitnesses were statistically indistinguishable. While some aspects of the biology of S. coffeae may impair its ability to adapt to local selection pressures, scale insects are often locally adapted on fine spatial scales, and local maladaptation is therefore especially surprising. Other documented cases of local maladaptation in parasites appear to be due to evolution on the part of the host. The possibility that hosts or natural enemies may place local genotypes at a disadvantage, producing a pattern of local maladaptation, is one that deserves more consideration in the context of plant-insect interactions.  相似文献   

13.
Prediction of host plant range and ecological impact of exotic phytophagous insects, such as insects for classical biological control of weeds, represents a major challenge. Recently, the flowerhead weevil (Rhinocyllus conicus Fröl.), introduced from Europe into North America to control exotic thistles (Carduus spp.), has become invasive. It feeds heavily on some, but not all species of native North American thistles (Cirsium spp.). We hypothesized that such non-target use among native plants could be better predicted by knowledge of characteristic chemical profiles of secondary compounds to supplement the results of host specificity testing. To evaluate this hypothesis, we reviewed the literature on the chemistry of Cirsium and Carduus thistles. We asked what compounds are known to be present, what is known about their biological activity, and whether such information on chemical profiles would have better predicted realized host range and ecological effects of R. conicus in North America. We found an extensive, but incomplete literature on the chemistry of true thistles. Two main patterns emerged. First, consistent chemical similarities and interesting differences occur among species of thistles. Second, variation occurs in biologically active groups of characteristic compounds, specifically flavonoids, sterols, alkaloids and phenolic acids, that are known to influence host plant acceptance, selection, and feeding by phytophagous insects. Surprisingly, sesquiterpene lactones, which are characterisitic in closely related Asteraceae, have not been extensively reported for Cirsium or Carduus. The minimal evidence on sesquiterpene lactones may reflect extraction methods vs. true absence. In summary, our review suggests further research on thistle chemistry in insect feeding is warranted. Also, since the exotic Canada thistle (Cirsium arvense) is an invasive thistle of current concern in North America, such research on mechanisms underlying host range expansion by exotic insects would be useful.  相似文献   

14.
We describe three models predicting relationships between: (a) the taxonomic composition of the regional species pool of phytophagous insects and the composition of the phytophagous insect fauna on a host taxon; and (b) the faunal composition of two host taxa. The predictions of these models were compared with empirical data representing the regional pool of phytophages in Central Europe and the faunas of two plant taxa: the cabbage plants (Brassicaceae) and the thistles (Asteraceae: Cardueae). Three important findings emerge at a general level. (1) Different taxonomic levels of insects (orders, families, genera) of the regional pool and on the investigated host taxa are well correlated in terms of species richness, but there is no consistent trend in the variance explained by this correlation across taxonomic levels. (2) The model considering evolutionary interactions and speciation processes is consistent with patterns found in the empirical data. (3) Asymmetries in sampled species numbers of insect families on both host taxa may be accounted for by reference to the biology of these insects. We conclude that the faunas of single host taxa can provide the basis for extrapolating to the regional pool, at least at high taxonomic levels.  相似文献   

15.
信息化合物对昆虫行为的影响   总被引:13,自引:1,他引:12  
鲁玉杰  张孝羲 《昆虫知识》2001,38(4):262-266
本文综述了来自寄主植物的挥发性物质和同种昆虫或异种昆虫释放的各种信息素及两者的协同作用的信息化合物对昆虫行为的影响。特别强调了寄主植物的气味物质和昆虫信息素协同作用在昆虫寻找寄主、求偶、交配及天敌在寄主识别过程中的重要地位。昆虫对寄主植物的识别是由于识别了植物气味的由一定组分、按照严格比例组成的化学指纹图。昆虫信息素与植物挥发性物质相结合为昆虫寻找求偶、交配场所提供更复杂或更全面的信息。许多昆虫只有在寄主植物或寄主植物气味存在时 ,才能释放性或聚集信息素。天敌在寄主识别、搜索及定位等一系列过程中 ,来自寄主的食料、寄主本身及两者的互作的信息化合物起重要的作用。研究信息化合物对昆虫行为的影响可以探索昆虫各种行为的内在机理 ,更好的了解寄主—昆虫—天敌三层营养关系的相互作用 ,对利用天然活性化合物防治害虫及生物防治提供理论依据  相似文献   

16.
Our knowledge on how the local distribution pattern of ordinary and novel hosts promotes or hinders the progress of adaptation to the novel hosts by phytophagous insects is limited. The herbivorous ladybird beetle Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) depends mainly on solanaceous plants as hosts; the major wild host of this beetle species in Java, Indonesia, is Solanum torvum. However, in several regions of Southeast Asia, including Java, H. vigintioctopunctata also occurs on the introduced fabaceous weed, Centrosema molle. Circumstantial evidence indicates that the use of C. molle by beetles became frequent in the very early 2000s in East Java. In the present study, based on laboratory and field data obtained from 2003 to 2005, we evaluated the degree of adaptation to C. molle by H. vigintioctopunctata populations from East Java and documented the geographic pattern of host-plant distribution in East Java. Laboratory experiments revealed that the beetles from East Java possessed the highest degree of adaptation to C. molle among the beetle populations thus far investigated, suggesting that the adaptation to C. molle by beetles proceeded quite rapidly in East Java in the early 2000s. Meanwhile, field surveys showed that the habitats in East Java consisted of mosaics with sites where only C. molle was distributed and sites where C. molle and solanaceous plants co-occurred. We discussed the role of such geographical structure of habitats in promoting the rapid adaptation of H. vigintioctopunctata to C. molle in East Java.  相似文献   

17.
18.
Populations of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), from the east coast of the United States differ in their ability to survive on a wild host, Solanum carolinense (Solanaceae), but not on their most important cultivated host, Solanum tuberosum. On the wild host, the North Carolina population survived best, while populations from Virginia, New Jersey, and Connecticut exhibited uniformly low survival. Formal genetic studies of populations from Connecticut and North Carolina demonstrated heritable variation in the ability to survive on S. carolinense both between and within populations; the North Carolina population had the higher heritability for this trait. Overall, there was no genetic variation between populations or within the North Carolina population for survival on S. tuberosum, but such variation existed within the Connecticut population. Hybrids and backcrosses between these two lines all survived at intermediate levels, although survivorship did not appear to be inherited additively. Differences in survival were greater than differences in adult weight at emergence and development time of the survivors. Leptinotarsa decemlineata was first reported from North Carolina less than 100 years ago. The rapid expansion of L. decemlineata's host range in North Carolina is attributed to the poor synchrony between the insect and S. tuberosum compared to more northerly locations. In contrast to the prediction of a strong negative correlation in fitness on different host species, the ability of L. decemlineata to survive on S. carolinense was not correlated with that on S. tuberosum. Adult weight and female development time were significantly positively correlated across hosts. Our results are in accord with most previous studies in which strong negative correlations in fitness of specialized phytophagous insects feeding on different hosts were expected, sought, but not found.  相似文献   

19.
An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis (Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domestica Borkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host-associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple-infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life-history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasii Lindl.) and an introduced species (Crataegus monogyna Jacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi-directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply that R. pomonella can both possess and retain extensive-standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.  相似文献   

20.
Candidate weed biocontrol agents must be screened to exclude those that could threaten desirable plants . Traditionally , this has been done by rejecting species that develop on economically important plants in laboratory no - choice tests . However , because congeneric plants often support development in these tests , even when they are not utilized in nature , the tests do not meet legislated requirements for rare plant species or the increasing public concern for native plants . Plant suitability for larval development is a poor predictor of host range because insects use a sequence of steps in which the early steps , such as host finding and acceptance for oviposition , tend to be stronger than the later ones , such as suitability for development . This study is a trial of a new approach to screening insects as weed biocontrol agents that uses risk analysis to quantify the suitability of a plant as a host on the basis of inset performance at various stages in its life cycle . The insects used for the study was a NW Chinese biotype of the leaf beetle , Altica carduorum, which in terms of climate adaptation and damage it inflicts on the weedy thistle Cirsium arvense, is a promising biocontrol agent for Canada . However , its ability to develop on all North American Cirsium spp . in laboratory no - choice tests currently excludes its release . We show by risk and factor analyses , with five sequential host - selection parameters , that the suitability of these thistles to A. carduorum is so low that the beetle would not jeopardize the continued existence of rare native thistles , so its release should not be a problem .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号