首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitroindazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

2.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,66(3):PL 41-PL 46
We reported previously that escins Ia, Ib, IIa, and IIb, isolated from horse chestnuts, inhibited the 30-min gastric emptying (GE) in mice. In this study, the effects of escins Ia-IIb on gastrointestinal transit (GIT), and the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the effects of escins Ia--IIb on GE and GIT were investigated in fasted mice. Escins Ia-IIb (12.5-50 mg/kg, p.o.) dose-dependently accelerated GIT. Both GE inhibitions and GIT accelerations by escins Ia-IIb (25 mg/kg) were markedly attenuated by pretreatment with indomethacin (10 mg/kg, s.c., an inhibitor of PGs synthesis). Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p., an inhibitor of constitutive and inducible NO synthase) attenuated the effects of escins Ia-IIb on GIT, but not on GE. The effect of L-NAME was reversed by L-arginine (600 mg/kg, i.p., a substrate of NO synthase), but not by D-arginine (900 mg/kg, i.p., the enantiomer of L-arginine). The GIT accelerations of escins Ia-IIb were not attenuated by pretreatment with D-NAME (10 mg/kg, i.p., the enantiomer of L-NAME) or dexamethasone (5 mg/kg, i.p., an inhibitor of inducible form of NO synthase). The results suggest that endogenous PGs play an important role in both GE inhibitions and GIT accelerations, and constitutive NO is involved in the GIT accelerations, by escins Ia--IIb in mice.  相似文献   

3.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

4.
The impact of L-arginine (LA), a precursor for synthesis of nitric oxide (NO), and N-omega-nitro-L-arginine methyl ester (L-NAME, LN), a non-selective inhibitor of the enzyme producing nitric oxide (nitric oxide synthase; NOS) chronic toxicity induced lesions on Ascites - Pulmonary hypertension syndrome (PHS) development was investigated in 140 one-day-old male broiler chickens (ROSS) during the first 5 weeks of life. Every second day the animals were treated intraperitoneally (ip) with L-NAME (10 mg/kg of body weight; BW), L-arginine (100 mg/kg BW), L-arginine and L-NAME in combination (100 mg/kg BW and 10 mg/kg BW respectively), and with physiological saline (0.90% w/v of NaCl; 0.5 mL/kg BW). Seven birds from each group were euthanized every week. The histopathological examination of the heart, the liver, the lungs, the blood vessels and the lymphoid organs, was performed. Also the organ index values were determined. At the end of the experiment the pre-ascitic condition or ascites - PHS was confirmed in five dead animals in the L-NAME-treated group. In the same group the edema was the most prominent histopathological change confirmed in the heart and in the lungs of the sacrificed chickens. In L-arginine-treated group the congestion and the haemorrhages were the striking changes in the same organs with the highest degree in the last two weeks of trial. While the focal disruption of myocardiofibriole and hepatocytes were predominant lesions in L-NAME-treated chickens (5th and 4th weeks, respectively), in L-NAME/L-arginine-treated group only the mild focal myocardial degeneration was seen. According to the most of the results of present investigation, it was concluded that the consecutive treatment with L-NAME provoked ascites - PHS, while L-arginine has protective effect in this animal model of disease.  相似文献   

5.
The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (l-NAME) increased vascular resistance (VR) 10% above baseline of 3.08+/-0.08 (n=11) mmHg/mL/min at 10 mg/kg and 20% above 3.05+/-0.08 (n=9) at 50 mg/kg in anesthetized toads (Bufo marinus). Blood pressure was unaffected by either dose of L-NAME. Blood flow decreased at the higher dose of L-NAME. L-arginine (300 mg/kg) reversed the effects of L-NAME on VR and blood flow in toads treated with 10 mg/kg but not with 50 mg/kg. Injection of 50 mg/kg L-NAME into empty-bladder toads produced a 10% decrease in water uptake, J(v), resulting in a J(v) of 1,267+/-11 cm(3)/cm(2)/s x 10(-7) (n=9) compared to 1,385+/-12 (n=8) for controls. Injection of 10 microg/kg angiotensin II (ANG II) increased J(v) 15% across the pelvic patch (J(v), cm(3)/cm(2)/s x 10(-7)), resulting in a J(v) of 1,723+/-12 cm(3)/cm(2)/s x 10(-7) (n=8) compared to 1,471+/-12 (n=8) for controls. It is hypothesized that during cutaneous drinking blood flow into the capillary bed of the pelvic patch is regulated by nitric oxide and ANG II.  相似文献   

6.
To test whether nitric oxide (NO) participates in cyclosporine A (CsA)-induced neurotoxicity including convulsions, we examined the effect of an NO synthase inhibitor on convulsions induced by combined treatment with CsA and bicuculline in mice and the effect of CsA on NO production in the dorsal hippocampus using an in vivo microdialysis method in rats. CsA (200 mg/kg, i.p.) significantly increased the intensity of convulsions induced by an intracerebroventricular injection of bicuculline (25 pmol) in mice. This facilitation was blocked by N omega -nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, but not by N omega -nitro-D-arginine methyl ester (D-NAME), an inactive form of L-NAME (10 mg/kg, i.p.). CsA (20-50 mg/kg, i.p.) dose-dependently increased NO 2 - levels in dialysates obtained with microdialysis in the rat dorsal hippocampus. This enhanced NO 2 - formation was blocked by L-NAME but not by D-NAME (50 mg/kg, i.p.). These findings suggest that CsA stimulates NO production and induces convulsions as a result of an interaction between NO and the gamma-aminobutyric acid (GABA) system in the hippocampus.  相似文献   

7.
Immunophilins are abundantly present in the brain as compared to the immune system. Immunophilin-binding agents like FK506 are known to inactivate neuronal nitric oxide synthase (nNOS) by inhibiting calcineurin and decrease the production of nitric oxide. Nitric oxide is involved in the mediation of nociception at the spinal level. In the present study, the effect of FK506 on the tail flick response in mice and the possible involvement of NO-L-arginine pathway in this paradigm was evaluated. FK506 (0.5, 1 and 3 mg/kg, ip) produced a significant antinociception in the tail flick test. Nitric oxide synthase (NOS) inhibitor L-NAME significantly and dose dependently (10-40 mg/kg, ip) potentiated the FK506 (0.5 mg/kg)-induced antinociception. On the other hand, NOS substrate L-arginine (100, 200 and 400 mg/kg) inhibited the FK506-induced antinociception in a dose-dependent manner. Concomitant administration of L-NAME (20 and 40 mg/kg) with L-arginine (200 mg/kg) blocked the inhibition exerted by L-arginine on the FK506-induced antinociception. Thus, it was concluded that NO- L-arginine pathway may be involved in the FK506-induced antinociception in tail flick test.  相似文献   

8.
The possible involvement of nitric oxide (*NO) in the preservation of blood flow to the canine gingiva after compression of gingival tissue was studied. Gingival blood flow, gingival tissue oxygen partial pressure (PO2), external carotid arterial blood pressure and external carotid arterial blood flow were monitored before, during, and after compression of gingival tissue in the presence and absence of the nitric oxide synthase inhibitor, Nomega-nitro-L-arginine-methyl-ester (L-NAME). Compression of gingival tissue resulted in an immediate decrease in gingival blood flow and tissue PO2. After the compression of gingival tissue, hyperemia was observed in the gingiva, which depended on the duration of ischemia. Gingival tissue PO2 slowly recovered during hyperemia. Pretreatment with L-NAME (60 mg/kg, i.a.) significantly suppressed reactive hyperemia in gingival tissue. The L-NAME-suppressed reactive hyperemia was partially reversed by treatment with L-arginine (60 mg/kg, i.a.). In addition, *NO was detected using an *NO selective electrode during interruption of blood flow and during reactive hyperemia in the gingiva. These results suggest that *NO contributes to the vasodilation during reactive hyperemia in gingival tissue, and aids in the maintenance of homeostasis in gingival circulation.  相似文献   

9.
It has been shown that nitric oxide (NO) increases aggression in male mice, whereas it decreases aggression in lactating female mice and prairie voles. It is also known that aggression can be exhibited at different levels in rodent species, strain or subtypes. The aims of this study were to investigate the proportion of aggressiveness in Wistar rats, the effect of intraperitoneally administered nonspecific nitric oxide synthase (NOS) inhibitor L-NAME (NG-nitro L-arginine methyl ester) on maternal aggression towards female intruders, and whether these effects are due to NO production or not. Rats were given saline intraperitoneally on the postpartum Day 2 and aggression levels were recorded. The same rats were given 60 mg/kg L-NAME or D-NAME (NG-nitro D-arginine methyl ester) on the postpartum Day 3 and their effects on aggression levels were compared to saline. While L-NAME administration did not cause any differences in the total number of aggressive behavior, aggression duration and aggression intensity, it reduced the proportion of animals showing aggressive behavior. In addition, the latency of the first aggression was significantly increased by L-NAME. In the D-NAME group, however, no significant change was found. Our results have shown that L-NAME reduces maternal aggression towards female intruders in Wistar rats through inhibition of NO production. These results suggest that the role of NO in offensive and defensive maternal aggression shares neural mechanisms.  相似文献   

10.
We investigated the effect of peripheral or central administration of N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase inhibitor, on food intake in layer and broiler chicks (Gallus gallus). The intraperitoneal administration of L-NAME significantly decreased food intake in both broiler and layer chicks while the administration of D-NAME, an inactive form of L-NAME, had no effect. The intracerebroventricular (ICV) injection of L-NAME did not affect food intake in broiler chicks. However, ICV injection of L-NAME increased food intake in layer chicks while the injection of D-NAME had no effect. In addition to this, L-NAME-induced feeding was negated with the co-injection of L-arginine, suggesting that NO acts as a feeding-inhibitor signal in the brain of layer chicks. The present study revealed that administration of NO synthase inhibitor affected food intake in chicks, but the effect might be changed by chick strain and position of the injection.  相似文献   

11.
Nitric oxide (NO) is a major signaling molecule and biological mediator of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the role of NO formed by endothelial (e), neuronal (n) and inducible (i) nitric oxide synthase (NOS) in the stimulatory effect of nicotine on the HPA axis in rats under basal conditions. Also possible interaction of NOS systems with endogenous prostaglandins (PG) in that stimulation was assessed. NOS and cyclooxygenase inhibitors were administered i.p. 15 min prior to nicotine (2, 5 mg/kg i.p.). Plasma ACTH and serum corticosterone levels were measured 1 h after nicotine injection. NOS blockers given alone did not markedly affect the resting ACTH and corticosterone levels. L-NAME (2-10 mg/kg), a broad spectrum NOS inhibitor considerably and dose dependently enhanced the nicotine-induced ACTH and corticosterone secretion. L-NNA (2 mg/kg) and 7-nitroindazole (7-NI 20 mg/kg), neuronal NOS inhibitors in vivo also significantly augmented the nicotine-induced ACTH and corticosterone levels. L-arginine greatly impaired the nicotine-induced hormone responses and reversed the L-NNA elicited enhancement of the nicotine-evoked ACTH and corticosterone response. In contrast to the constitutive eNOS and nNOS antagonists, an inducible NOS antagonist guanethidine (50-100 mg/kg i.p.) did not substantially affect the nicotine-elicited pituitary-adrenocortical responses. Indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase blocker abolished the L-NAME and L-NNA-induced enhancement of the nicotine-evoked ACTH and corticosterone response. These results indicate that NO is an inhibitory mediator in the HPA axis activity. Inhibition of its generation by eNOS and nNOS significantly enhances the nicotine-induced HPA response. Under basal conditions iNOS is not involved in the nicotine-induced ACTH and corticosterone secretion. Prostaglandins play an obligatory role in the response of HPA axis to systemic nicotine administration.  相似文献   

12.
Brain microdialysis and high-performance liquid chromatography with electrochemical detection were used to study the effect of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) on striatal dopamine (DA) release in the anesthetized rat. Systemic administration of L-NAME (10 mg/kg, i.p.) significantly decreased the resting release of DA. The peak effect (23% decrease) was reached 45 min after injection. The inactive enantiomer D-NAME (10 mg/kg, i.p.) or the vehicle (saline, 5 ml/kg i.p.) had no effect on the striatal DA level. Neither treatment altered significantly the concentration of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). To investigate the possible involvement of the DA uptake system L-NAME was injected also in the presence of the DA uptake inhibitor nomifensine. Local application of nomifensine (10 microM in the dialysate medium) increased the extracellular concentration of DA to about eight-fold of the basal value and stabilized it at this higher level. Under these conditions L-NAME (10 mg/kg, i.p.) was not able to alter the striatal DA level. Neither nomifensine nor L-NAME caused any change in the level of DOPAC and HVA. Our data suggest that endogenously produced nitric oxide may influence the activity of the DA transporter which effect may have special importance in the regulation of extracellular transmitter concentration in the striatum.  相似文献   

13.
Abstract

Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by NG-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitro-indazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

14.
L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.  相似文献   

15.
H Matsuda  Y Li  M Yoshikawa 《Life sciences》1999,65(2):PL27-PL32
The roles of capsaicin-sensitive sensory nerves (CPSN), endogenous nitric oxide (NO), sulfhydryls (SHs), prostaglandins (PGs) in the gastroprotection by momordin Ic, an oleanolic acid oligoglycoside isolated from the fruit of Kochia scoparia (L.) SCHRAD., on ethanol-induced gastric mucosal lesions were investigated in rats. Momordin Ic (10 mg/kg, p.o.) potentially inhibited ethanol-induced gastric mucosal lesions. The effect of momordin Ic was markedly attenuated by the pretreatment with capsaicin (125 mg/kg in total, s.c., an ablater of CPSN), N(G)-nitro-L-arginine methyl ester (L-NAME, 70 mg/kg, i.p., an inhibitor of NO synthase), N-ethylmaleimide (NEM, 10 mg/kg, s.c., a blocker of SHs), or indomethacin (10 mg/kg, s.c., an inhibitor of PGs biosynthesis). The attenuation of L-NAME was abolished by L-arginine (300 mg/kg, i.v., a substrate of NO synthase), but not by D-arginine (300 mg/kg, i.v., the enatiomer of L-arginine). The effect of the combination of capsaicin with indomethacin, NEM, or L-NAME was not more potent than that of capsaicin alone. The combination of indomethacin and NEM, indomethacin and L-NAME, or indomethacin and NEM and L-NAME increased the attenuation of each alone. These results suggest that CPSN play an important role in the gastroprotection by momordin Ic on ethanol-induced gastric mucosal lesions, and endogenous PGs, NO, and SHs interactively participate, in rats.  相似文献   

16.
17.
N(G)-nitro-D-arginine methyl ester (D-NAME), considered as an inactive enantiomer of NAME, is generally used as a negative control for NO synthase inhibition with L-NAME. The aim of this work was to compare the effect of L-NAME (20 and 40 mg/kg/day), and D-NAME (40 mg/kg/day) on hemodynamic and structural parameters in the rat cardiovascular system. After 4 weeks of treatment, blood pressure and left ventricle weight/body weight ratio increased significantly in all studied groups versus control. Myocardial fibrosis (in %) represented 0.94 +/- 0.04 in control, 4.70 +/- 0.39 in L-NAME (20 mg/kg/day), 10.54 +/- 0.91 in L-NAME (40 mg/kg/day) and 5.25 +/- 0.46 in D-NAME (40 mg/kg/day) group. We conclude that in a long-term experiment D-NAME provokes similar changes in cardiovascular system like L-NAME.  相似文献   

18.
Effect of L-arginine on leukocyte adhesion in ischemia-reperfusion injury   总被引:5,自引:0,他引:5  
Nitric oxide has been reported to be beneficial in preserving muscle viability following ischemia-reperfusion injury. The purpose of this study was to evaluate the influence of nitric oxide via L-arginine on leukocyte adhesion following ischemia-reperfusion injury. Intravital videomicroscopy of rat gracilis muscle was used to quantify changes in leukocyte adherence. The gracilis muscle was raised on its vascular pedicle in 48 male Wistar rats. The animals were assigned to one of five groups: (1) nonischemic control; (2) ischemia-reperfusion; (3) ischemia-reperfusion and L-arginine; (4) ischemia-reperfusion and Nomega-nitro-L-arginine methyl ester (L-NAME); and (5) ischemia-reperfusion, L-NAME, and L-arginine. All groups that included ischemia-reperfusion were subjected to 4 hours of global ischemia followed by 2 hours of reperfusion. L-Arginine (10 mg/kg) and L-NAME (10 mg/kg) were infused into the contralateral femoral vein beginning 5 minutes before reperfusion, for a total of 30 minutes. The number of adherent leukocytes was counted at baseline and at 5, 15, 30, 60, and 120 minutes after reperfusion (reported as mean change from baseline, +/- SEM). Groups were compared by repeated-measures analysis of variance (five groups, five times). P < or =0.05 was accepted as significant. L-Arginine significantly reduced leukocyte adherence to venular endothelium during reperfusion when compared with the ischemia-reperfusion group (1.39 +/- 0.92 versus 12.78 +/- 1.43 at 2 hours, p < 0.05). Administration of L-NAME with L-arginine showed no significant difference in adherent leukocytes when compared with the ischemia-reperfusion group (10.28 +/- 2.03 at 2 hours). The nitric oxide substrate L-arginine appears to reduce the deleterious neutrophil-endothelial adhesion associated with ischemia-reperfusion injury. L-NAME (nitric oxide synthesis inhibitor) given concomitantly with L-arginine reversed the beneficial effect of L-arginine alone, indicating that L-arginine may be acting via a nitric oxide synthase pathway. These results suggest an important role for nitric oxide in decreasing the neutrophil-endothelial interaction associated with ischemia-reperfusion injury.  相似文献   

19.
We studied the effects of intracerebroventricular and intraperitoneal injection and the in vitro effects of N-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, on the nitric oxide synthase activities of the cerebellum, brainstem, hypothalamus, hippocampus, and the remainder of the brain after dissections. Male rats were chronically implanted with lateral icv guide cannula. L-NAME was injected in doses of 0.2, 1, and 5 mg intracerebroventricularly, and 50 mg/kg intraperitoneally. L-NAME induced dose-dependent suppression of NOS activities in each brain region. The threshold dose was 0.2 mg; 1 mg L-NAME completely abolished brain nitric oxide synthase activity 90 min after the injection. Brain NOS activities returned to baseline level 48 h after the injection of 5 mg L-NAME. There were significant differences between the sensitivity of various regions to L-NAME after in vivo but not in vitro administration of the enzyme inhibitor. These findings indicate that intracerebroventricular injection of L-NAME is a useful tool for inhibiting brain nitric oxide synthase activities in vivo. The differences between the sensitivity of different brain regions to L-NAME as well as the relative fast recovery of nitric oxide synthase activities must be taken into account when L-NAME is administered intracerebroventricularly to rats.  相似文献   

20.
We have administered aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase, and N-nitro-L-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase inhibitor, to rats made febrile with the gram-positive pyrogen, muramyl dipeptide and gram-negative pyrogen, lipopolysaccharide. Sprague-Dawley rats, housed individually at approximately 25 degrees C with a 12:12 h light:dark cycle (lights on 0700 hours), were injected (at 0900 hours) intraperitoneally with 50 mg/kg aminoguanidine, 25 mg/kg or 50 mg/kg L-NAME, and intramuscularly with 500 microg/kg muramyl dipeptide or 100 microg/kg lipopolysaccharide. Pyrogen injections were spaced at least 14 days apart. Body temperature was measured throughout the study in unrestrained animals using radio-telemetry. Neither muramyl dipeptide nor lipopolysaccharide-induced fevers were affected by aminoguanidine. However, L-NAME administration inhibited muramyl dipeptide and lipopolysaccharide-induced fevers, but only for the 1st 2-4 h of the fevers (two-way ANOVA, P<0.05). After the initial inhibition, lipopolysaccharide fevers developed normally. Therefore, constitutively expressed nitric oxide synthase appears to be involved in the initial phases of fever genesis of gram-negative and gram-positive fevers in rats. On the other hand, inducible nitric oxide synthase appears not to play a role in these fevers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号