首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have sequenced a cDNA clone, pLgSSU, which encodes the small subunit of ribulose 1,5-bisphosphate carboxylase of Lemna gibba L.G-3 a monocot plant. This clone contains a 832 basepair insert which encodes the entire 120 amino acids of the mature small subunit polypeptide (Mr = 14,127). In addition this clone encodes 53 amino acids of the amino terminal transit peptide of the precursor polypeptide and 242 nucleotides of the 3' non-coding region. Comparison of the nucleotide sequence of pLgSSU with Lemna gibba genomic sequences homologous to the 5' end of the cDNA clone suggests that nucleotides encoding four amino-terminal amino acids of the transit peptide are not included in the cDNA clone. The deduced amino acid sequence of the Lemna gibba mature small subunit polypeptide shows 70-75% homology to the reported sequences of other species. The transit peptide amino acid sequence shows less homology to other species. There is 50% homology to the reported soybean sequence and only 25% homology to the transit sequence of another monocot, wheat.  相似文献   

2.
We have identified three major blocks of amino acid homology shared by the transit peptides of two nuclear-encoded chloroplast proteins, the light-harvesting chlorophyll a/b-protein (LHCP) II of the thylakoid membrane and the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) of the stroma. These previously unrecognized homology blocks lie at the beginning, middle and end of both transit sequences, and are separated by differing lengths of unshared (interblock) sequence in the two proteins. These interblocks may be dispensible or they might confer a specific property on the individual proteins, such as facilitating proper compartmentalization within the chloroplast. We propose that these three shared sequence elements form a common framework in transit-bearing chloroplast precursors which mediates the common functions performed by each transit peptide. Ferredoxin, the only other such nuclear-encoded protein for which a published transit sequence exists, conforms to the predictions of this hypothesis. These findings stand in contrast to mitochondrial leader sequences and the well-studied signal peptides of secretory and certain integral membrane proteins in which no such framework has been observed.  相似文献   

3.
4.
DNA sequences encoding ribulose 1,5-bisphosphate carboxylase small subunit precursor from Pisum sativum L. have been transcribed from plasmids containing the SP6 promoter, and translated in a wheat germ cell-free system. The small subunit precursor polypeptide, its N-terminal leader sequence (transit peptide) and the mature small subunit have each been synthesized independently from three different plasmid constructs. The precursor polypeptide is imported into isolated pea chloroplasts and processed to the mature small subunit by a stromal proteinase. The mature polypeptide is neither imported, nor subject to proteolysis by stromal extracts. The transit peptide alone is very rapidly degraded by a stromal proteinase activity which can be inhibited by EDTA or 1,10-phenanthroline. The use of these gene constructs helps to establish the crucial role of the transit peptide in protein import into the chloroplast.  相似文献   

5.
We have cloned a full length cDNA for the small subunit of ribulose-1,5-bisphosphate carboxylase from C4 monocot maize, determined the complete nucleotide sequence of this cDNA and deduced its amino acid sequence. The cDNA insert included 513 bp of the coding region, and 65 and 252 nucleotides of the 5' and 3' untranslated regions, respectively. The transit and mature peptides have, respectively, 47 and 123 amino acids. Comparison with the small subunit genes from other plants revealed that the maize small subunit is similar to the wheat one, there being 73% homology between the transit peptides and 64% between the mature proteins. This indicates that there is no noteworthy difference between the C3 and C4 small subunit structures. Extreme codon bias was observed for this gene, and similar codon preferences are observed for other proteins highly expressed in maize leaf, light harvesting chlorophyll binding protein and phosphoenolpyruvate carboxylase. The results indicate that preferential codon usage for highly expressed genes occurs in maize leaf.  相似文献   

6.
A cDNA clone for the extrinsic 30 kDa protein (OEC30) of photosystem II in Euglena gracilis Z was isolated and characterized. The open reading frame of the cDNA encoded a polypeptide of 338 amino acids, which consisted of a long presequence of 93 amino acids and a mature polypeptide of 245 amino acids. Two hydrophobic domains were identified in the presequence, in contrast to the presence of a single hydrophobic domain in the presequence of the corresponding proteins from higher plants. At the N- and C-terminal regions, respectively, of the presequence, a signal-peptide-like sequence and a thylakoid-transfer domain were identified. The presence of a long and unique presequence in the precursor to OEC30 is probably related to the complexity of the intracellular processes required for the synthesis and/or transport of the protein in Euglena.Abbreviations ER endoplasmic reticulum - cDNA complementary DNA - SSU small subunit; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - Rubico, ribulose 1,5 bisphosphate carboxylase/oxygenase - LHC II light-harvesting chlorophyll protein of photosystem II - PS II photosystem II - OEC30 the extrinsic 30 kDa protein of photosystem II in Euglena - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - TE a solution containing 10 mM Tris-HCl and 1 mM EDTA pH 8.0 - SSPE a solution containing 0.15 M NaCl, 10 mM NaH2PO4 and 1 mM EDTA pH 7.4 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PVDF poly(vinylidene difluoride)  相似文献   

7.
Roesler KR  Ogren WL 《Plant physiology》1990,94(4):1837-1841
Immunoblot analysis of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase from the green alga Chlamydomonas reinhardtii indicated the presence of a single polypeptide. This observation contrasts with the Spinacea oleracea (spinach) and Arabidopsis thaliana proteins, in which two polypeptide species are generated by alternative pre-mRNA splicing. A Chlamydomonas rubisco activase cDNA clone containing the entire coding region was isolated and sequenced. The open reading frame encoded a 408 amino acid, 45 kilodalton polypeptide that included a chloroplast transit peptide. The presumptive mature polypeptide possessed 62% and 65% amino acid sequence identity, respectively, with the spinach and Arabidopsis mature polypeptides. The Chlamydomonas rubisco activase transit peptide possessed almost no amino acid sequence identity with the higher plant transit peptides. The nucleotide sequence of Chlamydomonas rubisco activase cDNA provided no evidence for alternative mRNA splicing, consistent with the immunoblot evidence for only one polypeptide. Genomic DNA blot analysis indicated the presence of a single Chlamydomonas rubisco activase gene. In the presence of spinach rubisco activase, a lower extent and rate of activation were obtained in vitro with Chlamydomonas rubisco than with spinach rubisco. We conclude Chlamydomonas rubisco activase comprises a single polypeptide which differs considerably from the higher plant polypeptides with respect to primary structure.  相似文献   

8.
We have isolated and sequenced three cDNA clones for the nuclear-encoded precursor to the small subunit of the chloroplast enzyme, ribulose-1,5-bisphosphate carboxylase of wheat. The nucleotide sequences of these clones are different, indicating that they are probably derived from three different mRNAs. This finding is consistent with the proposal that this polypeptide is encoded by a multigene family in wheat, in support of similar data reported by Broglie et al. (Bio/Technology 1:55-61, 1983). We deduce that the mature small subunit polypeptide is comprised of 128 amino acids and that its precursor contains an N-terminal transit peptide sequence. The sequences of both the mature small subunit and its transit peptide differ at several positions from those determined by Broglie et al, (1983) from a different wheat cultivar. Different wheat cultivars might therefore contain different small subunit polypeptides. A comparison of nucleotide and amino acid sequences of the small subunit from wheat, pea, soybean and spinach shows that these sequences are not highly conserved, particularly between monocotyledon and dicotyledon species.  相似文献   

9.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

10.
Based on the protein sequence deduced from a cDNA clone, it has been proposed that the maize bt1 locus encodes an amyloplast membrane metabolite translocator protein (Sullivan, T. D., Strelow, L. I., Illingworth, C. A., Phillips, R. L., and Nelson, O. E., Jr. (1991) Plant Cell 3, 1337-1348). The present work provides further evidence for this hypothesis by showing that the gene product of Bt1 could be imported into chloroplasts in vitro and processed to lower molecular weight mature proteins. More importantly, the imported mature proteins were localized to the inner envelope membrane, where metabolite translocators are located in plastids. In addition, the location of information for targeting to the inner membrane was investigated by constructing and analyzing the import of chimeric precursor proteins. A chimeric protein with the transit peptide of the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase fused to the mature region of the Bt1-encoded protein was targeted to the inner envelope membrane of chloroplasts. Moreover, a chimeric protein with the transit peptide of the Bt1-encoded protein fused to the mature protein of the light-harvesting chlorophyll a/b binding protein was targeted to the thylakoid. These results indicate that the transit peptide of the Bt1-encoded protein functions primarily as a stromal targeting sequence. The information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the protein.  相似文献   

11.
The gene for the Mr 32000 herbicide binding polypeptide of photosystem II has previously been mapped to the 5 kbp EcoRI fragment Eco I of Euglena gracilis chloroplast DNA. The nucleotide sequence of 3324 bp of Eco I, containing the psbA locus, has been determined. This locus encodes a polypeptide of 345 amino acids which is co-linear with, and has 86% derived amino acid sequence homology to sequences derived from four higher plants chloroplast psbA loci. The Euglena psbA gene contains four introns of size 435, 443, 434, and 617 bp. The four introns have conserved boundary sequences of the type previously described in the Euglena chloroplast gene (rbcL) for the large subunit of ribulose-1,5-bisphosphate carboxylase (Koller et al., Cell 36, 545-553, 1984).  相似文献   

12.
The role of transit peptides in intraorganellar targeting has been studied for a chlorophyll a/b binding (CAB) polypeptide of photosystem II (PSII) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) from Pisum sativum (pea). These studies have involved in vitro import of fusion proteins into isolated pea chloroplasts. Fusion of the CAB transit peptide to RBCS mediates import to the stroma, as evidenced by assembly of RBCS with chloroplast-synthesized large subunit (RBCL) to form holoenzyme. Similarly, fusion of the RBCS transit peptide to the mature CAB polypeptide mediates import and results in integration of the processed CAB protein into the thylakoid membrane. Correct integration was indicated by association with PSII and assembly with chlorophyll to form the light-harvesting chlorophyll a/b protein complex (LHCII). We interpret these results as evidence that the CAB transit peptide is functionally equivalent to a stromal-targeting sequence and that intraorganellar sorting of the CAB protein must be determined by sequences residing within the mature protein. Our results and those of others suggest that import and integration of CAB polypeptides into the thylakoid proceeds via the stroma.  相似文献   

13.
香蕉rbcS基因启动子的克隆及序列分析   总被引:1,自引:0,他引:1  
以巴西香蕉为材料,根据已经获得的香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的全长cDNA序列设计1对专一引物,通过PCR扩增得到了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基的基因组全长,序列长811 bp,含有2个内含子。根据其基因组序列设计引物,采用SEFA-PCR方法,以总DNA为模板克隆了香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的启动子序列,长1 681 bp。用PLACE软件分析发现该序列具有启动子的基本元件TATA-box、CAAT-box,包含多个胁迫诱导元件,如光诱导元件、赤霉素、低温诱导元件、昼夜节律调控元件等。该序列的克隆与分析为进一步研究香蕉1,5-二磷酸核酮糖羧化/加氧酶小亚基基因的表达调控奠定了基础。  相似文献   

14.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

15.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

16.
Mechanically isolated asparagus (Asparagus officinalis) mesophyll cells dedifferentiate and divide when cultured in the dark in a medium containing sucrose. A strong correlation was observed between the onset of cell division and a loss of photosynthetic capacity. For the first 8 to 9 d of culture, there was no change in chloroplast size or morphology. However, following this period, the chloroplasts divided to form smaller proplastid-like structures. The gross chlorophyll content of the cell population did not change, suggesting that the loss of photosynthetic potential was not by senescence. Northern analysis showed that mRNA of the small subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase was undetectable within 1 d postisolation, which was quicker than in dark-treated plants. The mRNA of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase decreased to low levels within 2 d of cell isolation. Both the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase protein showed a gradual reduction in abundance, falling to basal levels by days 6 to 7, which coincided with the onset of rapid cell division. A similar trend was observed with chloroplast rRNA molecules, which decreased to basal levels by day 6 in culture.  相似文献   

17.
A Suzuki 《Biochimie》1987,69(6-7):723-734
Some structural, immunochemical and catalytic properties are examined for ribulose 1,5-bisphosphate carboxylase-oxygenase from various cellular organisms including bacteria, cyanobacteria, algae and higher plants. The native enzyme molecular masses and the subunit polypeptide compositions vary according to enzyme sources. The molecular masses of the large and small subunits from different cellular organisms, on the other hand, show a relatively high homology due to their well-conserved primary amino acid sequence, especially that of the large subunit. In higher plants, the native enzyme and the large subunit are recognized by the antibodies raised against either the native or large subunit, whereas the small subunit apparently cross-reacts only with the antibodies directed against itself. A wide diversity exists, however, in the serological response of the native enzyme and its subunits with antibodies directed against the native enzyme or its subunits from different cellular organisms. According to numerous kinetic studies, the carboxylase and oxygenase reactions of the enzyme with ribulose 1,5-bisphosphate and carbon dioxide or oxygen require activation by carbon dioxide and magnesium prior to catalysis with ribulose 1,5-bisphosphate and carbon dioxide or oxygen. The activation and catalysis are also under the regulation of other metal ions and a number of chloroplastic metabolites. Recent double-labeling experiments using radioactive ribulose 1,5-bisphosphate and 14CO2 have elucidated the carboxylase/oxygenase ratios of the enzymes from different organisms. Another approach, i.e., genetic experiments, has also been used to examine the modification of the carboxylase/oxygenase ratio.  相似文献   

18.
19.
P. J. Shaw  J. A. Henwood 《Planta》1985,165(3):333-339
The proteins ribulose 1,5-bisphosphate carboxylase/oxygenase, ATP synthase, light-harvesting chlorophyll a/b protein, and cytochrome f, have been localized in mesophyll chloroplasts of barley (Hordeum vulgare L.) by electron microscopy of immunogold-labelled sections. The light-harvesting chlorophyll a/b protein and cytochrome f are shown to be present in the grana, both within the stacks and at the margins, and in the stromal membranes. Although the absolute amount of labelling for these proteins is greater in the grana than in the stromal membranes, when expressed as label/membrane length the partitioning appears approximately equal between appressed and non-appressed membranes for both the light-harvesting chlorophyll a/b protein and cytochrome f. ATP synthase is restricted to the non-appressed thylakoid membranes, and ribulose 1,5-bisphosphate carboxylase/oxygenase is uniformly distributed through the stromal contents.Abbreviations CF1 ATP synthase - LHCPII light-harvesting chlorophyll a/b protein - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

20.
Growth of wheat seedlings in the presence of the phytotoxin tagetitoxin produces pigment-deficient leaves of normal size and morphology whose cells contain only rudimentary plastids. We could not detect the accumulation of either the plastid-encoded large subunit or the nuclear-encoded small subunit of the chloroplast stromal enzyme ribulose 1,5-bisphosphate carboxylase (RuBPCase) in western blots of protein extracted from leaves of such seedlings. Sucrose gradient centrifugation profiles showed that plastid ribosomes were essentially absent in toxin-treated leaf tissue while cytoplasmic ribosomes were relatively unaffected. Northern blot analysis of RNA in toxin-treated leaves showed a deficiency of plastid ribosomal RNA (16S and 23S) as well as reduced levels of plastid mRNAs for the large subunit of RuBPCase and for the 32 kilodalton thylakoid QB polypeptide. Northern analysis also showed that the nuclear-encoded rbcS mRNA for the small subunit of RuBPCase is present in only trace amounts in toxin-treated leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号