首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation can involve the evolution of 'cryptic' reproductive isolation that occurs after copulation but before hybrid offspring are produced. Because such cryptic barriers to gene exchange involve post-mating sexual interactions, analyses of their evolution have focused on sexual conflict or traditional sexual selection. Here, we show that ecological divergence between populations of herbivorous walking sticks is integral to the evolution of cryptic reproductive isolation. Low female fitness following between-population mating can reduce gene exchange between populations, thus acting as a form of cryptic isolation. Female walking sticks show reduced oviposition rate and lower lifetime fecundity following between-population versus within-population mating, but only for mating between populations using different host-plant species. Our results indicate that even inherently sexual forms of reproductive isolation can evolve as a by-product of ecological divergence and that post-mating sexual interactions do not necessarily evolve independently of the ecological environment.  相似文献   

2.
We show that two complementary asymmetric isolating mechanisms, likely mediated by divergence in body size, underlie the evolution of incipient reproductive isolation between a set of Drosophila melanogaster populations selected for rapid development and their ancestral controls. Selection has led to great reduction in body size in the fast developing lines. Small males belonging to fast developing lines obtain few matings with large control females, both in presence and absence of large control line males, giving rise to unidirectional, premating isolation caused by sexual selection. Conversely, small selected line females suffer greatly increased mortality following mating with large control males, causing unidirectional postcopulatory prezygotic isolation. We discuss preliminary evidence for evolution of reduced male harm caused to females upon mating in the fast developing lines, and speculate that the females from these lines have coevolved reduced resistance to male harm such that they can no longer resist the harm caused by males from control lines. This potentially implicates differing levels of sexual conflict in creating reproductive barrier between the selected line females and the control males. We also show that a large difference in development time is not sufficient to cause postzygotic incompatibilities in the two sets of populations reaffirming the belief that prezygotic isolation can evolve much earlier than postzygotic isolation.  相似文献   

3.
Abstract The evolution of premating isolation after secondary contact is primarily considered in the guise of reinforcement, which relies on low hybrid fitness as the driving force for mating preference divergence. Here I consider two additional forces that may play a substantial role in the adaptive evolution of premating isolation, direct selection on preferences and indirect selection against postmating, prezygotic incompatibilities. First, I argue that a combination of ecological character displacement and sensory bias can cause direct selection on preferences that results in the pattern of reproductive character displacement. Both analytical and numerical methods are then used to demonstrate that, as expected from work in single populations, such direct selection will easily overwhelm indirect selection due to low hybrid fitness as the primary determinant of preference evolution. Second, postmating, prezygotic incompatibilities are presented as a driving force in the evolution of premating isolation. Two classes of these mechanisms, those increasing female mortality after mating but before producing offspring and those reducing female fertility, are shown to be identical in their effects on preference divergence. Analytical and numerical techniques are then used to demonstrate that postmating, prezygotic factors may place strong selection on preference divergence. These selective forces are shown to be comparable if not greater than those produced by the low fitness of hybrids.  相似文献   

4.
External male reproductive structures have received considerable attention as a cause of reproductive isolation (RI), because the morphology of these structures often evolves rapidly between populations. This rapid evolution presents the potential for mechanical incompatibilities with heterospecific female structures during mating and could thus prevent interbreeding between nascent species. Although such mechanical incompatibilities have received little empirical support as a common cause of RI, the potential for mismatch of reproductive structures to cause RI due to incompatible species‐specific tactile cues has not been tested. We tested the importance of mechanical and tactile incompatibilities in RI between Enallagma anna and E. carunculatum, two damselfly species that diverged within the past ~250,000 years and currently hybridize in a sympatric region. We quantified 19 prezygotic and postzygotic RI barriers using both naturally occurring and laboratory‐reared damselflies. We found incomplete mechanical isolation between the two pure species and between hybrid males and pure species females. Interestingly, in mating pairs for which mechanical isolation was incomplete, females showed greater resistance and refusal to mate with hybrid or heterospecific males compared to conspecific males. This observation suggests that tactile incompatibilities involving male reproductive structures can influence female mating decisions and form a strong barrier to gene flow in early stages of speciation.  相似文献   

5.
Sexual selection may lead to reproductive isolation between populations through divergence in female mate choice, and population differentiation driven by female mate choice is expected to produce pre- but not post-mating isolation. We tested these hypotheses by looking at whether allopatric populations of the Amarillo (Girardinichthys multiradiatus), a sexually dimorphic viviparous fish with effective female choice, (i) have undergone phenotypical differentiation that may be attributed to divergence in female mate choice, and (ii) are already separated by pre- and/or post-mating reproductive barriers. We found substantial divergence in morphological traits which are the target of female mate choice, and in male courtship behaviour. Strong female preferences for homogametic males indicate substantial and symmetric pre-copulatory isolation, but the few successful heterogametic crosses produced in confinement yielded litters of the same size as those produced in homogametic matings, suggesting that post-copulatory isolation between populations is non-existent or weak. It appears that the studied populations have undergone incipient speciation with a pattern that is consistent with speciation driven by sexual selection, yet further work should assess whether divergence in female preferences has promoted male phenotypic differentiation or whether variation in male attributes has driven divergence in female preferences.  相似文献   

6.
Identifying mechanisms of reproductive isolation is key to understanding speciation. Among the putative mechanisms underlying reproductive isolation, sperm–female interactions (post‐mating–prezygotic barriers) are arguably the hardest to identify, not least because these are likely to operate at the cellular or molecular level. Yet sperm–female interactions offer great potential to prevent the transfer of genetic information between different populations at the initial stages of speciation. Here, we provide a preliminary test for the presence of a putative post‐mating–prezygotic barrier operating between three populations of Trinidadian guppies (Poecilia reticulata), an internally fertilizing fish that inhabits streams with different levels of connectivity across Trinidad. We experimentally evaluate the effect of female ovarian fluid on sperm velocity (a predictor of competitive fertilization success) according to whether males and females were from the same (native) or different (foreign) populations. Our results reveal the potential for ovarian fluid to act as a post‐mating–prezygotic barrier between two populations from different drainages, but also that the strength of this barrier is different among populations. This result may explain the previous finding that, in some populations, sperm from native males have precedence over foreign sperm, which could eventually lead to reproductive isolation between these populations.  相似文献   

7.
Using experimental evolution, we investigated the contributions of ecological divergence, sexual selection, and genetic drift to the evolution of reproductive isolation in Caenorhabditis remanei. The nematodes were reared on two different environments for 100 generations. They were assayed for fitness on both environments after 30, 64, and 100 generations, and hybrid fitness were analyzed after 64 and 100 generations. Mating propensity within and between populations was also analyzed. The design allowed us to determine whether local adaptation was synchronous with pre‐ and postzygotic reproductive isolation. Prezygotic isolation evolved quickly but was unconnected with adaptation to the divergent environments. Instead, prezygotic isolation was driven by mate preferences favoring individuals from the same replicate population. A bottleneck treatment, meant to enhance the opportunity for genetic drift, had no effect on prezygotic isolation. Postzygotic isolation occurred in crosses where at least one population had a large fitness advantage in its “home” environment. Taken together, our results suggest that prezygotic isolation did not depend on drift or adaptation to divergent environments, but instead resulted from differences in sexual interactions within individual replicates. Furthermore, our results suggest that postzygotic isolation can occur between populations even when only one population has greater fitness in its home environment.  相似文献   

8.

Background

The evolution of reproductive traits, such as hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation), have shown their key role in speciation. Theoretical modeling has recently predicted that close linkage between genes controlling pre- and postzygotic reproductive isolation could accelerate the conditions for speciation. Postzygotic isolation could develop during the sympatric speciation process contributing to the divergence of populations. Using hybrid fitness as a measure of postzygotic reproductive isolation, we empirically studied population divergence in perch (Perca fluviatilis L.) from two genetically divergent populations within a lake.

Results

During spawning time of perch we artificially created parental offspring and F1 hybrids of the two populations and studied fertilization rate and hatching success under laboratory conditions. The combined fitness measure (product of fertilization rate and hatching success) of F1 hybrids was significantly reduced compared to offspring from within population crosses.

Conclusion

Our results suggest intrinsic genetic incompatibility between the two populations and indicate that population divergence between two populations of perch inhabiting the same lake may indeed be promoted by postzygotic isolation.  相似文献   

9.
The molecular and evolutionary basis of reproductive isolation in plants   总被引:1,自引:0,他引:1  
Reproductive isolation is defined as processes that prevent individuals of different populations from mating, survival or producing fertile offspring. Reproductive isolation is critical for driving speciation and maintaining species identity, which has been a fundamental concern in evolutionary biology. In plants, reproductive isolation can be divided into prezygotic and postzygotic reproductive barriers, according to its occurrence at different developmental stages. Postzygotic reproductive isolation caused by reduced fitness in hybrids is frequently observed in plants, which hinders gene flow between divergent populations and has substantial effects on genetic differentiation and speciation, and thus is a major obstacle for utilization of heterosis in hybrid crops. During the past decade, China has made tremendous progress in molecular and evolutionary basis of prezygotic and postzygotic reproductive barriers in plants. Present understandings in reproductive isolation especially with new data in the last several years well support three evolutionary genetic models, which represent a general mechanism underlying genomic differentiation and speciation. The updated understanding will offer new approaches for the development of wide-compatibility or neutral varieties, which facilitate breeding of hybrid rice as well as other hybrid crops.  相似文献   

10.
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate—female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate‐female reproductive tract interactions within species that may cause this PMPZ isolation.  相似文献   

11.
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species.  相似文献   

12.
Speciation is the combination of evolutionary processes that leads to the reproductive isolation of different populations. We investigate the significance of sex-chromosome evolution on the development of post- and prezygotic isolation in two naturally hybridizing Ficedula flycatcher species. Applying a tag-array-based mini-sequencing assay to genotype single nucleotide polymorphisms (SNPs) and interspecific substitutions, we demonstrate rather extensive hybridization and backcrossing in sympatry. However, gene flow across the partial postzygotic barrier (introgression) is almost exclusively restricted to autosomal loci, suggesting strong selection against introgression of sex-linked genes. In addition to this partial postzygotic barrier, character displacement of male plumage characteristics has previously been shown to reinforce prezygotic isolation in these birds. We show that male plumage traits involved in reinforcing prezygotic isolation are sex linked. These results suggest a major role of sex-chromosome evolution in mediating post- and prezygotic barriers to gene flow and point to a causal link in the development of the two forms of reproductive isolation.  相似文献   

13.
? Premise of the study: Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation. ? Methods: We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence. ? Key results: Estimated divergence times varied from 130000 generations between North American and European subspecies to 39000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhum?ki population. Local adaptation among Northern and central European populations has emerged during the last 39000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ~70000 generations but still have shared nucleotide polymorphism. ? Conclusions: In A. lyrata, reproductively isolated populations started to diverge ~70000 generations ago and more closely related, locally adapted populations have been separate lineages for ~39000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.  相似文献   

14.
Identifying mechanisms behind assortative mating is central to the understanding of ecological divergence and speciation. Recent studies show that populations of the freshwater isopod Asellus aquaticus can rapidly become locally differentiated when submerged Chara vegetation expands in lakes. In the novel Chara habitat, isopods have become lighter pigmented and smaller than in ancestral reed stands. In this study, we used a laboratory multiple-choice experiment to investigate assortative mating as a possible prezygotic reproductive barrier between Chara and reed isopods. Mating was assortative when Chara isopods were experimentally mixed with isopods from an adjacent reed site with large-size individuals, suggesting a partial prezygotic reproductive barrier. No deviation from random mating could, however, be detected when Chara isopods were mixed with smaller sized isopods from another reed site. In both experiments, assortative mating was apparently based on size, as Chara isopods were larger and reed isopods smaller in mixed pairs than in assortative pairs. Pigmentation did not have any clear influence on mating. We suggest that divergence in pigmentation evolved through natural selection in conjunction with size-assortative mating indirectly causing assortative mating between Chara and reed isopods. Size-assortative mating is likely a by-product of natural selection, but its importance may hypothetically be transient, if selection erodes the correlation between pigmentation and size over time.  相似文献   

15.
Differences in secondary sexual characteristics of males often provide the most conspicuous means of distinguishing between closely related species. Does this therefore imply that the absence of differentiation in exaggerated male traits between allopatric populations provides evidence of a single, genetically cohesive species? We addressed this question with a comprehensive investigation of two populations (French Guiana and Panama) of the harlequin beetle-riding pseudoscorpion, Cordylochernes scorpioides. This highly sexually dimorphic pseudoscorpion is currently described as a single species, ranging throughout the Neotropics. Our morphometric analyses detected minimal differentiation between the two populations in all nine external morphological characters measured, including sexually dimorphic traits in males. Only in traits of the spermatophore was there any appreciable level of differentiation. Behavior differentiation and prezygotic reproductive isolation were also limited: 78.3% of males successfully transferred sperm to “foreign” females, and in 63.9% of these cases, females' eggs were successfully fertilized. By contrast, extensive divergence existed in two of nine electrophoretic loci, including an essentially fixed-allele difference at the Ldh locus. Most significantly, postzygotic reproductive isolation was complete, with heteropopulation zygotes invariably aborting early in development. These results strongly suggest that the two populations are, in fact, sibling species, a conclusion supported by our recently published findings on their marked divergence in minisatellite DNA. How can such interpopulation homogeneity in male sexually dimorphic traits exist in the face of strong genetic divergence? We propose that sexual selection, oscillating between favoring small and then large males, maintains such high levels of male variability within each population that it has obscured a speciation event in which genetic divergence and postzygotic incompatibility have clearly outpaced the evolution of prezygotic reproductive isolation.  相似文献   

16.
We study the form of the clines in a female mating preference and male display trait using simulations of a hybrid zone. Allopatric populations of two species are connected by demes in a stepping stone arrangement. Results show that reproductive character displacement (a pattern of increased prezygotic isolation in sympatry compared with allopatry) may or may not result when there is reinforcement (defined here as the strengthening of prezygotic isolation as a result of selection against hybrids, relative to the amount of prezygotic isolation present when hybrids are not selected against). Further, reproductive character displacement of the preference may or may not occur when it occurs in the male display. We conclude that the absence of reproductive character displacement is not evidence against the operation of reinforcement.  相似文献   

17.
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among-population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by-product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.  相似文献   

18.
Reproductive isolation may often evolve as an indirect (pleiotropic) consequence of populations adapting to different environments or habitats. For example, niches that are temporally or seasonally offset can select for organisms with different developmental characteristics. These developmental differences can inadvertently cause reproductive isolation by a variety of means including shifts in mating activity patterns. Here, we show a genetic correlation between a life-history trait (developmental period) and a behavioral trait (time of mating) that causes significant premating isolation in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Fly lines selected for short and long developmental periods differ in their preferred times of mating during the evening. This difference translates into significant prezygotic isolation, as measured by mate choice tests. If the time of mating between two populations differed more than one hour, the isolation index was significantly higher than zero. These indicate that premating isolation can be established if the developmental period is divergently selected for. If such genetic correlations are ubiquitous in many organisms, multifarious divergent selection for life-history traits would often accelerate the evolution of reproductive isolation. We speculate that reproductive isolation may have been evolved via genetic correlations among time-related traits, for example, developmental period and time of mating, as in other organisms.  相似文献   

19.
Divergence and reproductive isolation in the early stages of speciation   总被引:2,自引:0,他引:2  
Tregenza T 《Genetica》2002,116(2-3):291-300
To understand speciation we need to identify the factors causing divergence between natural populations. The traditional approach to gaining such insights has been to focus on a particular theory and ask whether observed patterns of reproductive isolation between populations or species are consistent with the hypothesis in question. However, such studies are few and they do not allow us to compare between hypotheses, so often we cannot determine the relative contribution to divergence of different potential factors. Here, I describe a study of patterns of phenotypic divergence and premating and postmating isolation between populations of the grasshopper Chorthippus parallelus. Information on the phylogeographic relationships of the populations means that a priori predictions from existing hypotheses for the evolution of reproductive isolation can be compared with observations. I assess the relative contributions to premating isolation, postmating isolation and phenotypic divergence of long periods of allopatry, adaptation to different environments and processes associated with colonisation (such as population bottlenecks). Likelihood analysis reveals that long periods of allopatry in glacial refugia are associated with postmating reproductive isolation, but not premating isolation, which is more strongly associated with colonisation. Neither premating nor postmating isolation is higher between populations differing in potential environmental selection pressures. There are only weak correlations between patterns of genetic divergence and phenotypic divergence and no correlation between premating and postmating isolation. This suggests that the potential of a taxon to exercise mate choice may affect the types of factor that promote speciation in that group. I discuss the advantages and disadvantages of the general approach of simultaneously testing competing hypotheses for the evolution of reproductive isolation.  相似文献   

20.
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号