首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

3.
1. The effects of heavy metals on lipid peroxidation in the gills and digestive gland of mussels exposed for six days to Cu2+, Cd2+ or Zn2+ (40 μg/l/animal) were investigated.2. In the tissues of Cu-exposed mussels a significant increase of the level of malondialdehyde (MDA), which is indicative of the peroxidative process, and a decrease of the concentration of glutathione were observed.3. Moreover, in the digestive gland of mussels, copper exposure results in an increase of other carbonyl compounds and in the lysosomal accumulation of lipofuscin granules.4. The exposure of mussels to Zn or to Cd did not elicit any of the above effects.5. The results are discussed in relation to the possible role that Cu-induced lysosomal lipofuscin accumulation may play in heavy metal detoxification.  相似文献   

4.
The 70-kDa heat shock protein (Hsp) family is composed of both environmentally inducible (Hsp) and constitutively expressed (Hsc) family members. We sequenced 2 genes encoding an Hsp70 and an Hsc70 in the Pacific oyster Crassostrea gigas. The Cghsc70 gene contained introns, whereas the Cghsp70 gene did not. Moreover, the corresponding amino acid sequences of the 2 genes presented all the characteristic motifs of the Hsp70 family. We also investigated the expression of Hsp70 in tissues of oysters experimentally exposed to metal. A recombinant Hsc72 was used as an antigen to produce a polyclonal antibody to quantify soluble Hsp70 by enzyme-linked immunosorbent assay in protein samples extracted from oysters. Our results showed that metals (copper and cadmium) induced a decrease in cytosolic Hsp70 level in gills and digestive gland of oysters experimentally exposed to metal. These data suggest that metals may inhibit stress protein synthesis.  相似文献   

5.
6.
The concentrations of metallothionein (MT) in bivalves, a potential biomarker of metal pollution, are variable according to specific organs, the highest concentrations being encountered in the digestive glands of oysters. Thus, the present study has been focussed on this organ with a view to validate the use of MT as a biomarker in the field, the temporal changes of metal and metallothionein concentrations have been examined from March to October 1997 in the digestive gland of resident oysters from a clean site (Bay of Bourgneuf, France) and a metal-rich site, the Gironde estuary which has been shown as the most Cd-contaminated marine area in France but is also enriched with Cu and Zn. Moreover, oysters from the clean site have been translocated to the Gironde estuary over the same period. Taking into account all the samples collected over the 7 months of the study, MT concentrations in the digestive gland were positively correlated with weight whereas metal levels were negatively correlated with weight. However, considering monthly samples including specimens from both sites (resident or translocated oysters), a positive correlation was shown between MT and metal concentrations in autumn (September and October) but not in spring and summer. These findings limit the interest of using the digestive gland of oysters as the preferred tissue for the determination of MT concentration as a biomarker.The alternative use of gills should be considered.  相似文献   

7.
The concentrations of metallothionein (MT) in bivalves, a potential biomarker of metal pollution, are variable according to specific organs, the highest concentrations being encountered in the digestive glands of oysters. Thus, the present study has been focussed on this organ with a view to validate the use of MT as a biomarker in the field, the temporal changes of metal and metallothionein concentrations have been examined from March to October 1997 in the digestive gland of resident oysters from a clean site (Bay of Bourgneuf, France) and a metal-rich site, the Gironde estuary which has been shown as the most Cd-contaminated marine area in France but is also enriched with Cu and Zn. Moreover, oysters from the clean site have been translocated to the Gironde estuary over the same period. Taking into account all the samples collected over the 7 months of the study, MT concentrations in the digestive gland were positively correlated with weight whereas metal levels were negatively correlated with weight. However, considering monthly samples including specimens from both sites (resident or translocated oysters), a positive correlation was shown between MT and metal concentrations in autumn (September and October) but not in spring and summer. These findings limit the interest of using the digestive gland of oysters as the preferred tissue for the determination of MT concentration as a biomarker.The alternative use of gills should be considered.  相似文献   

8.
Oysters display a diversity of uptake mechanisms for metallic elements and distribution in the target organs, namely gills and the digestive gland. Various tissues of the flat oyster, Ostrea edulis, were studied following experimental exposure to 0.025 m (5 g l) of mercury, for up to 34 days. All animals survived the treatment. Data indicate Hg accumulation in gill tissue with a maximum concentration of 38.76 g g dry weight after 25 days of exposure. Hg levels were lower in remaining tissues, in which the maximum concentration (18.47 mg g-1 dry weight) was reached after 18 days of exposure. After these times, concentration in both tissues decreased. Results show that oysters can accumulate Hg from the environment, without their survival being affected during the experimental period. Structural alteration of epithelial tissues of gill and digestive gland of flat oyster was comparable with effects described for other metallic elements in bivalve molluscs. Interstitial tissue was disorganized in the digestive gland, and ultrastructural changes in intracellular endomembranes were detected in epithelial cells of the digestive gland after 18 days of treatment. After 25 days, absorptive epithelial cells of gills showed highly dilated, swollen microvilli. These intracellular alterations are parameters of the incipient response to the accumulation of mercury.  相似文献   

9.
Two different approaches were used to study the bioavailability of sediment-bound lead. In vitro techniques simulating the potential metal desorption under conditions prevailing in the digestive tract were assayed on a contaminated sediment. An experimental model of a food chain was designed to determine the retention of lead in the soft tissues of oysters according to the environmental source of the metal (water or sediment). Neither enzymatic action nor leaching at low pH (both aspects of digestion) induce the release of important lead amounts from particles. Therefore, after 3 weeks of exposure, the retention of lead from the trophic source is lower (1%) compared with direct contamination (5%). Lysosomes are the major intracellular structures responsible for lead storage in the gills, digestive tract and digestive gland. The abundance of lysosomes and their lead amount vary according to the gross concentrations in the soft tissues. The cytopathological data are in agreement with the results about lead accumulation: in oysters exposed to sediment-bound lead, impairments are not so marked as in individuals contaminated directly from water but the same organelles are concerned. Mitochondrial impairments may be related to the effect of lead on cellular respiration processes and changes involving the granular endoplasmic reticulum may have an effect on the level of protein synthesis. Cellular extrusions carrying away numerous lysosomes loaded with lead could account for the balancing of lead incorporation between 2 and 3 weeks of exposure.  相似文献   

10.
We evaluated the effects of short-term exposure to an organophosphate pesticide chlorpyrifos on the digestive gland and gills of the mussel Mytilus galloprovincialis. We studied metabolic activity by quantifying protein content and physiological function responses using acid DNase activity. The increase in protein content was observed in both the target tissues of mussels exposed to 0.03 μg/L chlorpyrifos when compared with control mussels. The pattern of acid DNase activity in digestive gland and gills indicated a tissue-specific response, although the lowest concentration of chlorpyrifos caused changes in acid DNase activity in both tissues. In the digestive gland, the increase of acid DNase activity was observed in mussel exposed to 0.03 μg/L chlorpyrifos, followed by decrease up to 100 μg/L chlorpyrifos. Enzyme activity in the gills showed a dose response effect. The results support the use of acid DNase activity in the digestive gland as a sensitive response to an environmentally relevant range of pesticide concentrations. It may also indicate an effect on mussel physiological status.  相似文献   

11.
This investigation attempts to determine the usefulness of autometallography to localise particular metals in certain key tissues of molluscs exposed to metal mixtures. For this purpose, winkles (Littorina littorea) removed from shell were exposed to very high concentrations of either copper (Cu), zinc (Zn) or a mixture of both metals (Cu&Zn) dissolved in sea-water for short periods of time. Protein-bound metals were detected by autometallography as black silver deposits (BSD) on histological sections of gills, foot, mantle, digestive gland/gonad complex, stomach and kidney. Copper was localised within cytoplasmic granules of gill ciliated cells, nephrocytes and stomach epithelial cells as well as within digestive cell lysosomes. Zinc was essentially found in the basal lamina (histological sense) of gill, stomach, kidney and digestive gland epithelia. BSD were also evidenced in cytoplasmic granules of pore cells present in parenchymal connective tissue of mantle, foot, gill, digestive gland and stomach. Copper and zinc concentrations were additionally calculated for the whole soft body as well as for certain organs by atomic absorption spectrophotometry (AAS). According to AAS, a synergistic phenomenon would contribute to increase the rate of Cu and Zn accumulation in presence of each other. However, after exposure to Cu&Zn autometallography did not evidence any synergistic phenomenon, and Cu and Zn were localised in their respective accumulation sites. In conclusion, autometallography might indicate the presence of certain metals in the environment irrespective of factors, such as "metal-metal interaction-like" phenomena, affecting metal concentrations in soft tissues.  相似文献   

12.
DNA probes were used in in situ hybridisation on histological sections of oysters exposed for defined intervals to Marteilia sydneyi infection to reveal the early development of the parasite in the oyster host, Saccostrea glomerata. The initial infective stages enter through the palps and gills whereupon extrasporogonic proliferation results in the liberation of cells into surrounding connective tissue and haemolymph spaces. Following systemic dissemination, the parasite infiltrates the digestive gland and becomes established as a nurse cell beneath the epithelial cells in a digestive tubule. Here, cell-within-cell proliferation results in the eventual liberation of daughter cells from the nurse cell into spaces between adjacent epithelial cells. None of these stages had previously been described. Proliferation is associated with host responses, including haemocytic infiltration of the connective tissue and diapedesis across tubule epithelia. The responses cease as sporogenesis begins.  相似文献   

13.
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 microg l(-1)) and ferric iron (20 and 40 mg l(-1)), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose-response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose-effect relationships and synergistic effects were not observed.  相似文献   

14.
Clear nosed skate, Raja erinacea were exposed to 0.10 (control), 0.52 or 1.73 microM copper and sculpin, Myoxocephalus octodecemspinosus were exposed to 0.10 or 1.73 microM copper (as CuSO4) in Salisbury Cove seawater for up to seven days. Skate gill copper concentrations increased 40-50 fold over background in response to copper exposure at both concentrations. In comparison, sculpin gill levels only increased 3-fold. While there was no evidence for internalized copper in the skate arising from the water-borne exposure, sculpin kidneys, but not livers, exhibited elevated copper concentrations after the seven days of exposure. The marked difference in branchial copper accumulation between the skate and the sculpin likely explains why elasmobranchs appear to be more sensitive to metal exposure than most marine teleost fish. Brain tissue from both species and the skate rectal gland contained relatively high background copper concentrations. Copper exposure caused an initial transient reduction in skate plasma total ammonia (Tamm), but eventually led to elevated plasma Tamm. Despite the marked branchial copper accumulation in the skate, there was no reduction in gill Na/K-ATPase activity. Similarly, Na/K-ATPase activity in skate rectal gland and intestine, as well as in sculpin gill and intestine were not affected by copper exposure. Plasma sodium, magnesium and chloride were not affected by copper exposure in either the skate or the sculpin.  相似文献   

15.
This study aimed to assess the antioxidant system potential and lipid peroxidative effects, in the gill and digestive gland of Mytilus galloprovincialis exposed to individual and binary mixtures of benzo(a)pyrene (BaP) and Cu for 7 days. Data demonstrated that in mussels exposed to BaP antioxidant enzymes (catalase--CAT, total glutathione peroxidase--tGPx, glutathione S-transferase--GST and glutathione reductase--GR) and lipid peroxidation (LPO) increased in the gill. On the contrary, in the digestive gland inhibitory antioxidant effects (superoxide dismutase-SOD, GR, metallothioneins-MT) and no changes in LPO levels were detected. Cu was also a potent oxidant agent since MT and LPO levels increased in mussel gill, despite no LPO effect in the digestive gland. For both single contaminants the organ specificity and distinct physiologic/metabolism roles were evident in terms of antioxidant capacity. Gill SOD inhibition, MT and GST unchanged was a result of "simple independent action" of exposure to BaP and Cu. "Interactions" in the binary mixtures, led to absence of changes in LPO effects. In the digestive gland, BaP and Cu interactions were also responsible for the GST and LPO enhancement (antagonistic effects). The current findings demonstrate the differences in antioxidant responses where the organ dependency highlights each contaminant particular mode of action. Generally, in the gill "non-interactive" effects occurred with the lowest Cu concentration while "interactions" exist for the mixture with the highest Cu concentrations. In the digestive gland, "interactions" and "no interaction" effects occurred in all the binary mixtures. Complex contaminant mixtures interact differently based on target tissue which may lead to an imbalance in the mussels health status.  相似文献   

16.
In this study, we characterized the full-length cDNA and genomic sequence of the gene encoding cytosolic glutamine synthetase (CgGSII) in the Pacific oyster, Crassostrea gigas. A phylogenetic analysis of GS sequences showed that CgGS clustered with the invertebrate group as expected. We analyzed the expression of mRNA CgGSII using RT-PCR to follow the expression of this gene in gills and digestive gland of oysters exposed, under experimental conditions, to hypoxia and to several contaminants (hydrocarbons and two pesticide treatments, glyphosate and a mixture of atrazine, diuron and isoproturon). We also investigated the expression of CgGSII in different developmental stages of C. gigas. Our results show that CgGSII expression was highly regulated in xenobiotic-exposed oysters compared to the control for all the treatments. Likewise, CgGSII expression was highly regulated according to the developmental stage of C. gigas. Finally, use of CgGSII as a possible marker to monitor xenobiotic exposure in disturbed ecosystems is discussed.  相似文献   

17.
Macrophage migration inhibitory factor (MIF) is an important cytokine and plays a crucial role as a pivotal regulator of innate immunity. In this study, a MIF cDNA was identified and characterized from the pearl oyster Pinctada fucata (designated as PoMIF). The full-length of PoMIF was 1544 bp and consisted of a 5'-untranslated region (UTR) of 45 bp, a 3'-UTR of 1139 bp with a polyadenylation signal (AATAAA) at 12 nucleotides upstream of the poly (A) tail. The open reading frame (ORF) of PoMIF was 360 bp which encoded a polypeptide of 120 amino acids with an estimated molecular mass of 13.3 kDa and a predicted pI of 6.1. SMART analysis showed that PoMIF contained the catalytic-sites P2 and K33 for tautomerase activity, a motif C??GSV?? for oxidoreductase activity and a MIF family signature D??PCGSVEVYSIGALG??. Homology analysis revealed that the PoMIF shared 40.3-65.5% similarity and 26.9-45.0% identity to other known MIF sequences. PoMIF mRNA was constitutively expressed in seven selected tissues of healthy pearl oysters, with the highest expression level in digestive gland. Eight hours after P. fucata was injected with Vibrio alginolyticus, the expression of PoMIF mRNA was significantly up-regulated in digestive gland, gills, hemocytes and intestine. The cDNA fragment encoding mature protein of PoMIF was subcloned to expression vector pRSET and transformed into Escherichia coli BL21 (DE3). The recombinant PoMIF (rPoMIF) was expressed and purified under optimized conditions. Function analysis showed that rPoMIF had oxidoreductase activity and could utilize dithiothreitol (DTT) as reductant to reduce insulin.  相似文献   

18.
Combined effects of cadmium (Cd) and temperature on key mitochondrial enzymes [including Complexes I-IV of electron transport chain and Krebs cycle enzymes citrate synthase (CS), and NAD- and NADP-dependent isocitrate dehydrogenases (NAD-IDH and NADP-IDH)] were studied in a marine ectotherm, Crassostrea virginica in order to better understand the mechanisms of Cd-induced impairment of mitochondrial function. Matrix enzymes including CS and isocitrate dehydrogenases were the most sensitive to Cd making Krebs cycle a likely candidate to explain Cd-induced impairment of mitochondrial substrate oxidation. CS and NAD-IDH had IC(50) of 26 and 65 microM at the acclimation temperature (15 degrees C) and 65 (CS) and 1.5 (NAD-IDH) microM at elevated temperature (25 degrees C), respectively. Mitochondrial NADP-IDH was the most sensitive to Cd with IC(50) of 14 and 3.4 microM at 15 degrees and 25 degrees C, respectively. Electron transport chain (ETC) complexes were significantly less sensitive to the direct effects of Cd with IC(50) ranging from 260 to >400 microM. Temperature increase led to a higher sensitivity of mitochondrial enzymes to the inhibitory effects of Cd as indicated by a decline in IC(50) with the exception of Complex III from gills and CS from gills and hepatopancreas. Cd exposure also resulted in a decrease in activation energy of mitochondrial enzymes suggesting that mitochondria from Cd-exposed oysters could exhibit reduced capacity to respond to temperature rise with an adequate increase in the substrate flux. These interactive effects of Cd and temperature on mitochondrial enzymes could negatively affect metabolic performance of oysters and possibly other ectotherms in polluted environments during temperature increase such as expected during the global climate change and/or tidal or seasonal warming in estuarine and coastal waters.  相似文献   

19.
Mussels Perna perna were exposed to air for 24 h showing a clear increase in the levels of lipid peroxidation and oxidative DNA damage, measured as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). The levels of lipid peroxidation increased both in the digestive gland and gills, while oxidative DNA damage increased only in the gills. After the 24 h of air exposure, mussels were re-submersed for a period of 3 h, leading values to return to a pre-aerial exposure levels. Control animals were kept immersed during the whole period. Several antioxidant and complementary enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), glutathione S-transferase (GST) and the levels of total glutathione (Total GSH) were assayed in a second set of experiments where one group of mussels were exposed to air for 18 h and other to 1 h re-submersion after 18 h aerial exposure. Only a 52% increase in the glutathione S-transferase activity was observed in the digestive gland, which remained elevated to about 40% after 1 h re-submersion, showing that defense systems can be modulated even during oxygen deprivation in P. perna. The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.  相似文献   

20.
The lipid and fatty acid composition of the blue mussels Mytilus edulis L. gills and digestive glands was evaluated after 24 and 72 h of cadmium (Cd) and copper (Cu) exposure. Mussels were exposed to different cadmium (10, 100, and 500 μg/L) and copper (5, 50, and 250 μg/L) concentrations. Similar stress response of predominant membrane phospholipids level as well as polyenoic and non-methylene interrupted (NMI) fatty acids content was observed in mussel gills under both cadmium and copper effects. Increased NMI fatty acids level after 24 h, the metal ions treatment suggests that these acids contribute to the protective response to the membrane oxidative stress caused by accumulation of the metals. The content of cholesterol, some minor membrane phospholipids, and storage lipids (triacylglycerols, TAG) in the mussels’ organs alter significantly under the cadmium and copper effect. A two-step response at the digestive glands TAG level depends on the duration of the cadmium and copper treatments (24 and 72 h) on the mussels. The results demonstrate that Cd and Cu impact has adverse effects on gills and digestive glands lipid and fatty acids composition. The type of observed effects varies with the nature and concentration of the metal ions and depends on the role of the metals in the mussels’ life activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号