首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Neurons and glia are highly susceptible to reactive oxygen species that play a key role in various neurodegenerative diseases. Menadione, a synthetic derivative of vitamin K, induces reactive oxygen generation. Quercetin one of the most ubiquitous bioflavonoids in food of plant origin, has strong antioxidant activities on different cell types, however recent studies demonstrated that it has also prooxidant and cytotoxic potentials. We examined the action of pre- and co-treatment of quercetin on menadione induced glial toxicity. The primary mixed glial cells obtained from 1 to 3 day old rat brain were pretreated with 10, 25, 100 or 250 μM quercetin for 1 h, washed out and 10, 25, 50, 75 or 100 μM menadione was added for 6 h. The other group of cells was treated with respective doses of quercetin combined simultaneously with the same doses of menadione for 6 h. The cells were washed and incubated for additional 24 h for recovery period and the viability was measured by using MTT assay. Menadione was dose-dependently toxic to glia cells and pretreatment with respective quercetin doses for 1 h could not eliminate this toxicity. Although 10 and 25 μM quercetin combined with 10 and 25 μM menadione could not change, 100 and 250 μM quercetin together with 10 or 25 μM menadione for 6 h increased further the menadione induced toxicity. We conclude that when combined with menadione, quercetin at high doses could be toxic to primary rat glia cells in culture.  相似文献   

2.
Cerebral infarction (CI) is a common clinical cerebrovascular disease, and to explore the pathophysiological mechanisms and seek effective treatment means are the hotspot and difficult point in medical research nowadays. Numerous studies have confirmed that uric acid plays an important role in CI, but the mechanism has not yet been clarified. When treating HT22 and BV-2 cells with different concentrations of uric acid, uric acid below 450 μM does not have significant effect on cell viability, but uric acid more than 500 μM can significantly inhibit cell viability. After establishing models of OGD (oxygen-glucose deprivation) with HT22 and BV-2 cells, uric acid at a low concentration (50 μM) cannot improve cell viability and apoptosis, and Reactive oxygen species (ROS) levels during OGD/reoxygenation; a suitable concentration (300 μM) of uric acid can significantly improve cell viability and apoptosis, and reduce ROS production during OGD/reoxygenation; but a high concentration (1000 μM) of uric acid can further reduce cell viability and enhance ROS production. After establishing middle cerebral artery occlusion of male rats with suture method, damage and increase of ROS production in brain tissue could be seen, and after adding suitable concentration of uric acid, the degree of brain damage and ROS production was reduced. Therefore, different concentrations of uric acid should have different effect, and suitable concentrations of uric acid have neuroprotective effect, and this finding may provide guidance for study on the clinical curative effect of uric acid.  相似文献   

3.
This study was designed to investigate the effect of pterostilbene (PTS) on cardiac oxidative stress in vitro, as this is a simple and promising methodology to study cardiac disease. Cardiac myoblasts (H9c2 cells) and homogenised cardiac tissue were incubated with the PTS and cyclodextrin (PTS?+?HPβCD) complex for 1 and 24 h, respectively, at concentrations of 50 μM for the cells and 25 and 50 μM for cardiac tissue. The PTS?+?HPβCD complex was used to increase the solubility of PTS in water. After the pretreatment period, cardiomyoblasts were challenged with hydrogen peroxide (6.67 μM) for 10?min, while cardiac tissue was submitted to a hydroxyl radical generator system (30?min). Cellular viability, oxidative stress biomarkers (e.g. total reactive oxygen species (ROS), carbonyl assay and lipoperoxidation) and the antioxidant response (e.g. sulfhydryl and the antioxidant enzyme activities of superoxide dismutase, catalase and glutathione peroxidase) were evaluated. In cardiomyoblasts, the PTS?+?HPβCD complex (50 μM) increased cellular viability. Moreover, the PTS?+?HPβCD complex also significantly increased sulfhydryl levels in the cells submitted to an oxidative challenge. In cardiac tissue, lipid peroxidation, carbonyls and ROS levels were significantly increased in the groups submitted to oxidative damage, while the PTS?+?HPβCD complex significantly reduced ROS levels in these groups. In addition, the PTS?+?HPβCD complex also provoked increased catalase activity in both experimental protocols. These data suggest that the PTS?+?HPβCD complex may play a cardioprotective role through a reduction of ROS levels associated with an improved antioxidant response.  相似文献   

4.
Index     
Anticancer role of oxindole compounds is well documented. Here, we synthesized new derivatives of 3-hydroxy-2-oxindole functionalized at position 3 (1a–f) which are expected to have antiproliferative activity in cancer cells. Human prostate cancer cell line (DU145) was treated with the synthesized derivatives at 40-μM concentration for 24, 48, and 72 h. Compounds 1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1d), 5-bromo-1-ethyl-3-hydroxy-1,1′,3,3′-2H,2′H-3,3′-biindole-2,2′-dione (1e), and 5-chloro-1-ethyl-3-hydroxy-1,1′,3,3′-tetrahydro-2H,2′H-3,3′-biindole-2,2′-dione (1f) were found to significantly reduce DU145 cell viability at 48 and 72 h whereas no significant changes were observed up to 24 h. The compounds 1e and 1f showed the most cytotoxicity effect and had a similar antiproliferative activity on DU145 cell line. They have halogen and ethyl substitutions at positions 5 and 1, respectively. The IC50 of compound 1e for DU145 and A375 cells at 48 h was determined. The apoptotic effects and cell cycle progression of compound 1e at 1/2 × IC50 (55 μM) concentration in DU145 cells were investigated by nuclei staining, comet assay, flow cytometry, and scanning electron microscopy (SEM). The results obtained showed that this compound increased the percentage of tail DNA, increased the occurrence of the sub-G1 phase, and induced G2M arrest and apoptosis in DU145 cells after exposure for 48 h to a 55-μM concentration. The SEM images revealed cell contraction at 24 h, cell condensation, plasma membrane blebbing, and formation of apoptotic bodies at 48 and 72 h. These observations suggest that the antiproliferative activity of compound 1e may be to induce apoptosis in DU145 cells.  相似文献   

5.
Menadione (MD) is an effective cytotoxic drug able to produce intracellularly large amounts of superoxide anion. Quercetin (QC), a widely distributed bioflavonoid, can exert both antioxidant and pro-oxidant effects and is known to specifically inhibit cell proliferation and induce apoptosis in different cancer cell types. We have investigated the relation between delayed luminescence (DL) induced by UV-laser excitation and the effects of MD, hydrogen peroxide, and QC on apoptosis and cell cycle in human leukemia Jurkat T-cells. Treatments with 500 μM H2O2 and 250 μM MD for 20 min produced 66.0 ± 4.9 and 46.4 ± 8.6% apoptotic cell fractions, respectively. Long-term (24 h) pre-exposure to 5 μM, but not 0.5 μM QC enhanced apoptosis induced by MD, whereas short-term (1 h) pre-incubation with 10 μM QC offered 50% protection against H2O2-induced apoptosis, but potentiated apoptosis induced by MD. Since physiological levels of QC in the blood are normally less than 10 μM, these data can provide relevant information regarding the benefits of flavonoid-combined treatments of leukemia. All the three drugs exerted significant effects on DL. Our data are consistent with (1) the involvement of Complex I of the mitochondrial respiratory chain as an important source of delayed light emission on the 10 μs–10 ms scale, (2) the ability of superoxide anions to quench DL on the 100 μs–10 ms scale, probably via inhibition of reverse electron transfer at the Fe/S centers in Complex I, and (3) the relative insensitivity of DL to intracellular OH? and H2O2 levels.  相似文献   

6.
Apoptosis can be detected reliably by assaying for cleaved caspase-3, for which active caspase-3 antibodies are used in several methods, such as immunocytochemistry, enzyme-linked immunosorbent assay, and western blot. In this study, we used TaqMan protein assay (TPA), a novel method for protein detection and quantification that detects proteins by amplification of substitute DNA templates. TPA uses antibodies and proximity ligation for quantitative real-time PCR. Meningiomas are primarily benign intracranial tumors. Primary cell cultures of meningiomas are often unsuitable for sensitive protein detection methods. We optimized a TPA to detect active caspase-3 and evaluated its ability to detect farnesol-induced apoptosis in primary meningioma cells. The specificity and sensitivity of the inactive and active caspase-3 assay were determined using recombinant caspase-3. Apoptosis was induced in meningiomas in the presence of 0.2 μM farnesol as shown by immunocytochemistry of single-stranded DNA. Also, viability decreased by over 90 % after treatment with 1.2 μM farnesol for 24 h. The TPA detected a significant increase in active caspase-3 after treatment with 2 and 4 μM farnesol for 2 h, which could not be detected using standard methods such as western blot and immunofluorescence. In addition, TPA determined that meningiomas show disparate sensitivities to low concentrations of farnesol. Caspase-3 expression fell significantly in cells that were treated with 0.25 μM farnesol for 2 h. Further, by TPA, active caspase-3 peaked after 2 h and declined with longer incubation times. This study demonstrates that cleaved caspase-3 is detected and quantified reliably in meningiomas by TPA.  相似文献   

7.

The purpose of this study was to investigate the effect of a superoxide-hydrogen peroxide (S-HP) imbalance of the superoxide dismutase manganese dependent (SOD2) gene, generated by paraquat and porphyrin exposure, on the keratinocytes cell line (HaCaT) oxidative metabolism. Paraquat acts increasing superoxide (O·?2) levels, while porphyrin increases hydrogen peroxide (H2O2) levels, acting as VV-SOD2-like and AA-SOD2-like molecules, respectively. First of all, HaCAT cells were treated with different concentrations of paraquat and porphyrin (1; 10; 30, and 70 μM) to determine the concentration of both that causes imbalance. After defining the concentration of paraquat and porphyrin (70 μM), a time curve was performed (1, 3, 6, and 24 h) to evaluate ROS production levels. Other oxidative parameters, such as nitric oxide (NO), lipoperoxidation (TBARS) and protein carbonyl, were evaluated after 24 h of incubation, as well as genotoxic analyses, apoptosis detection, and gene expression. Our findings revealed that paraquat exposure decreased cell viability, increasing lipoperoxidation, DNA damage, and apoptosis. On the other hand, porphyrin treatment increased cell viability and proliferation, ROS and NO production, triggering protein and DNA damage. In addition, porphyrin up-regulated Keap1 and Nrf2 gene expression, while paraquat decreased Nrf2 gene expression. In this sense, we suggested that the superoxide-hydrogen peroxide imbalance differentially modulates oxidative stress on keratinocytes cell line via Keap1-Nrf2 gene expression pathway.

  相似文献   

8.
Antimicrobial peptide Temporin-Ra was isolated from the skin secretions of marsh frog Rana ridibunda. Temporin-Ra was chemically synthesized and purified using RP-HPLC technique. The cytotoxicity of peptide on lung airway epithelial cell line (A549) and peripheral blood mononuclear cells (PBMC) was studied by MTT assay. Furthermore, the effect of Temporin-Ra on the expression of pro-inflammatory factors such as IL-1β and IL-8 in A549 cell line was evaluated at peptide concentrations of 15, 30 and 50 μg/mL for 6, 12 and 24 h using semi-quantitative RT-PCR and real-time PCR methods. The result of our experiments revealed that Temporin-Ra decreased cell viability about 3–13 % in A549 cells and 4–6 % in PBMC cells. Moreover, Temporin-Ra induced the mRNA expression of IL-1β and IL-8 genes in a dose- and time-dependent manner. According to our results, maximum IL-8 mRNA expression was observed after a 24-h treatment of cancer cells with 50 μg/mL peptide with approximately 18-fold increase in expression. The least expression level of IL-1β was observed after 6-h of incubation in the presence of 15 μg/mL peptide with 2.5-fold increase in expression whereas the most expression level was obtained following 24 h-treatment with 50 μg/mL peptide with 26-fold increase in mRNA expression. Eventually, the present study highlights the role of Temporin-Ra as a potent antimicrobial peptide in the activation and maintenance of inflammatory processes.  相似文献   

9.
The study was aimed to investigate the effect of baicalein, a flavonoid molecule isolated from the plant Oroxylum indicum on bladder cancer cell viability. The results revealed that baicalein treatment of T24 and 253J bladder cancer cells targeted the expression of mRNA and proteins corresponding to the anti-apoptotic genes. RT-PCR assay showed that anti-apoptotic genes were markedly over-expressed in the bladder cancer cells. Exposure of the bladder cancer cells to baicalein at 5 mg/mL doses for 72 h led to reduction in the expression of mRNA levels of antiapoptotic genes. In T24 cells, the levels of BCL2, Bcl-xL, XIAP and surviving was reduced by 65, 69, 58 and 72%, respectively. In T24 and 253J cells exposure to baicalein for 72 h resulted respectively in 39 and 46% reduction in cell viability. Baicalein treatment also induced apoptosis in the bladder cancer cells. In T24 and 253J cells baicalein treatment at 5 mg/mL for 72 h induced apoptosis in 79 and 86% cells respectively. Thus, baicalein mediated reduction in antiapoptotic gene expression inhibits viability and induces apoptosis in bladder cancer cells. Therefore, baicalein is of therapeutic importance for the development of bladder cancer treatment strategy.  相似文献   

10.
Diabetic cardiomyopathy (DCM) has become a major cause of diabetes-related morbidity and mortality. Increasing evidences have proved that hydrogen sulfide (H2S) fulfills a positive role in regulating diabetic myocardial injury. The present study was designed to determine whether GYY4137, a novel H2S-releasing molecule, protected H9c2 cells against high glucose (HG)-induced cytotoxicity by activation of the AMPK/mTOR signal pathway. H9c2 cells were incubated in normal glucose (5.5 mM), 22, 33, and 44 mM glucose for 24 h to mimic the hyperglycemia in DCM in vitro. Then we added 50, 100, and 200 μM GYY4137, and measured the cell viability, lactate dehydrogenase (LDH) enzyme activity, and mitochondrial membrane potential (MMP). 0.5 mM 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) and 1 mM adenine 9-β-d-arabinofuranoside (Ara-A, an AMPK inhibitor) were used to identity whether the AMPK/mTOR signal pathway was involved in GYY4137-mediated cardioprotection. We demonstrated that HG decreased cell viability and increased LDH enzyme activity in a concentration-dependent manner. 33 mM HG treatment for 24 h was chosen as our model group for further study. Both 100 and 200 μM GYY4137 treatments significantly attenuated HG-induced cell viability decrement, LDH enzyme activity increase, and MMP collapse. AICAR had similar effects to GYY4137 treatment while Ara-A attenuated GYY4137-mediated cardioprotection. Importantly, both GYY4137 and AICAR increased AMPK phosphorylation and decreased mTOR phosphorylation compared with the HG model group while Ara-A attenuated GYY4137-mediated AMPK phosphorylation increase and mTOR phosphorylation decrement. In conclusion, we propose that GYY4137 likely protects against HG-induced cytotoxicity by activation of the AMPK/mTOR signal pathway in H9c2 cells.  相似文献   

11.
Many studies suggest that exogenous antioxidants may protect cells against DNA damage caused with ionizing radiation. One of the most powerful antioxidants is lycopene (LYC), a carotenoid derived from tomatoes. The aim of this study was to investigate, using the comet assay, whether LYC can act as protectors/modifiers and prevent DNA damage induced in human blood lymphocytes, as well as to mitigate the effects of radiation exposure. In this project, LYC, dissolved in DMSO at a concentration of 10, 20 or 40 μM/ml of cell suspension, was added to the isolated lymphocytes from human blood at appropriate intervals before or after the X-irradiation at doses of 0.5, 1 and 2 Gy. Cell viability in all groups was maintained at above 70%. The results showed the decrease of DNA damage in cells treated with various concentrations of LYC directly and 1 h before exposure to X-rays compared to the control group exposed to irradiation alone. Contrary results were observed in cells exposed to LYC immediately after exposure to ionizing radiation. The studies confirmed the protective effect of LYC against DNA damage induced by ionizing radiation, but after irradiation the carotenoid did not stimulate of DNA repair and cannot act as modifier. However, supplementation with LYC, especially at lower doses, may be useful in protection from radiation-induced oxidative damage.  相似文献   

12.
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson’s disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10–100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.  相似文献   

13.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

14.
Chromium (VI) genotoxicity was evaluated in Allium bioassay by using different treatment protocols. Treatment of bulbs of Allium cepa L. with Cr(VI) at a range of concentrations for 5 days (120 h) exhibited low dose (12.5 μM) stimulation and high dose (25–200 μM) inhibition of root growth apparently indicating hormesis. Inhibition of root growth was correlated with the dose-dependent increase in generation of reactive oxygen species (ROS), cell death, lipid peroxidation, repression of antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase), induction of DNA damage, chromosome aberrations or micronuclei in root cells. The above effects were, however, reversed when the duration of Cr(VI) treatment was limited to 3–24 h followed by recovery in tap water for 4 days that resulted in the dose-dependent stimulation of root growth, mitosis and increased activity of the antioxidative enzymes that obliterated oxidative stress and genotoxicity. The above Cr(VI)-induced stimulation of root growth was effectively countered by pre- or post-treatments of dimethylthiourea, a ROS-scavenger. These findings underscored that Cr(VI), depending on the magnitude of the dose (concentration × time), could either be stimulatory or inhibitory for root growth that underlined the crucial role of ROS having obvious implications in agriculture, post harvest technology and human health.  相似文献   

15.
Current study was aimed to investigate the effect of dihydromyricetin on hydrogen peroxide induced oxidative stress in the osteosarcoma cells. MTT assay showed that hydrogen peroxide treatment at a concentration of 100 μM caused a significant (p < 0.005) reduction in the viability of MG63 cells. However, reduction in cell viability caused by 100 μM concentration of hydrogen peroxide was completely prevented on incubation with 30 μM dose of dihydromyricetin. Treatment with 100 μM concentration of hydrogen peroxide for 24 h led to condensation of chromatin material, rounding of cell shape and detachment of cells. The results from flow cytometry using annexin V-FITC and PI double staining showed apoptosis induction in 47.84 ± 5.21% cells on treatment with 100 μM concentration of hydrogen peroxide compared to 2.32 ± 0.54% in controlcells. The apoptotic alterations in MG63 cell morphology were prevented significantly on pre-treatment with 30 μM doses of dihydromyricetin for 48 h. Annexin V-FITC and PI staining showed reduction of hydrogen peroxide induced apoptotic cell percentage to 3.07 ± 0.86% on pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin. Western blot analysis showed a significant increase in the activation of caspase-3 and -9 on treatment of MG63 cells for 24 h with 100 μM concentration of hydrogen peroxide. The expression level of Bcl-2 was decreased significantly by 100 μM concentration of hydrogen peroxide in MG63 cells. However, pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin for 48 h significantly prevented hydrogen peroxide induced increase in caspase-3 and -9 levels and reduction in Bcl-2 level. Thus dihydromyricetin prevents hydrogen peroxide induced reduction in viability and induction of apoptosis in MG63 cells through down-regulation of caspase activation and up-regulation of Bcl-2 levels.  相似文献   

16.
The purpose of this study was to investigate the radioprotective effects of resveratrol as a natural product that protects against genotoxic actions of 131I in cultured human lymphocytes. Whole-blood samples from human volunteers were treated with resveratrol at doses of 0.5, 1, 5, and 50 μg/mL for 1 h, after which the lymphocytes were incubated with 131I (100 μCi/1.5 mL) for 2 h. The lymphocyte cultures were then mitogenically stimulated to enable evaluation of the number of micronuclei in cytokinesis-blocked binucleated cells. Incubation of lymphocytes with 131I induced genotoxicity, which was reflected by an increase in micronuclei frequency. At the doses tested, resveratrol significantly reduced micronuclei frequency. Maximal protective effects occurred at a dose of 1 μg/mL, with total micronuclei values being reduced by 65 % compared to controls. In conclusion, our results indicate protective effects of resveratrol at low doses against genetic damage and adverse effects induced by 131I administration.  相似文献   

17.
The present study was aimed to investigate the effect of dihydroartemisinin on the colon cancer cell proliferation and apoptosis. The results from MTT assay revealed a concentration and time dependent relation between the inhibition of SW 948 cell viability and dihydroartemisinin addition. The viability of SW 948 cells was reduced to 45 and 24% on treatment with 30 and 50 µM, respectively concentrations of dihydroartemisinin after 48 h. Morphological examination of SW 948 cells showed attainment of rounded shape and cluster formation on treatment with dihydroartemisinin. Western blot analysis showed a significant increase in the activation of caspase-3 and expression of cleaved PARP by dihydroartemisinin treatment. The activation of PPARγ was increased significantly in SW 948 cells by treatment with dihydroartemisinin. Compared to control, the migration potential of SW 948 cells was reduced significantly (p < 0.005) and the expression levels of MMP-2 and -9 inhibited by dihydroartemisinin at 50 µM concentration. In the dihydroartemisinin treatment group colon tumor formation was significantly inhibited on treatment with 20 mg/kg doses of dihydroartemisinin after 30 days. Therefore, dihydroartemisinin inhibits colon cancer growth by inducing apoptosis and increasing the expression of PPARγ. Thus dihydroartemisinin can be used for the treatment of colon cancer.  相似文献   

18.
The objective of this study is to examine the direct effects of low doses and high doses of ε-viniferin, a substance known to be an antioxidant, and vincristine sulphate, a chemotherapeutic agent, alone and in combination [ε-viniferin + vincristine] on HepG2 cell strain, as well as evaluate oxidative stress after incubation periods of 3, 6, and 24 h. Direct effect was determined right after the incubation period; however, for protective effect, antioxidant protection response was determined after the treatment for 1 h with 500 μM H2O2, which is an oxidative stressor. For this purpose, superoxide dismutase was determined for enzyme activity, and lipid hydroperoxide (LPO) and reduced glutathione concentrations were studied as indicators of oxidative stress. Results show that low [3.63 µM vincristine + 3.75 µM ε-viniferin] and high [11.25 µM vincristine + 15.8 µM ε-viniferin] doses of combination groups showed similar direct antioxidant effect on LPO levels as protective when compared to the H2O2 control group (p < 0.05). Superoxide dismutase enzyme showed a direct antioxidant effect in low and high dose combination groups. In addition, when the incubation period was increased to 24 h, a protective effect was observed in both dose groups (p < 0.05). Reduced glutathione activities showed a direct effect in the low dose combination group, and a protective effect in both the low and high doses in the 24 h. These results show that combined usage of drugs in HepG2 cell strain possesses a protective effect against exogenically produced oxidative stress conditions.  相似文献   

19.
Oxidative stress can induce neuronal apoptosis via the production of superoxide and hydroxyl radicals. This process is as a major pathogenic mechanism in neurodegenerative disorders. In this study, we aimed to clarify whether theaflavins protect PC12 cells from oxidative stress damage induced by H2O2. A cell model of PC12 cells undergoing oxidative stress was created by exposing cells to 200 μM H2O2 in the presence or absence of varying concentrations of theaflavins (5, 10, and 20 μM). Cell viability was monitored using the MTT assay and Hoechst 33258 staining, showing that 10 μM theaflavins enhanced cell survival following 200 μM H2O2 induced toxicity and increased cell viability by approximately 40?%. Additionally, we measured levels of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. This suggested that the neuroprotective effect of theaflavins against oxidative stress in PC12 cells is derived from suppression of oxidant enzyme activity. Furthermore, Western blot analyses indicated that theaflavins downregulated the ratio of pro-apoptosis/anti-apoptosis proteins Bax/Bcl-2. Theaflavins also downregulated the expression of caspase-3 compared with a H2O2-treated group that had not been treated with theaflavins. Interestingly, this is the first study to report that the four main components of theaflavins found in black tea can protect neural cells (PC12) from apoptosis induced by H2O2. These findings provide the foundations for a new field of using theaflavins or its source, black tea, in the treatment of neurodegenerative diseases caused by oxidative stress.  相似文献   

20.
Abstract: Chronic exposure of embryonic brain to opioids leads to microcephaly and developmental abnormalities. An immortalized mouse neuroblastoma × dorsal root ganglion hybrid cell line stably transfected to overexpress κ-opioid receptors (F-11κ7) showed complete loss of κ-receptor binding to [3H]U69,593 after exposure to the κ-agonist U69,593 for 24 h. U69,593 had no measurable effect on cell viability as determined by either cell viability or DNA fragmentation assays. However, when cell death (apoptosis) was induced by either staurosporine or the phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002, cells pretreated with U69,593 for 24 h showed increased apoptosis compared with untreated cells. Thus, staurosporine (50 n M ), wortmannin (4 µ M ), and LY294002 (30 µ M ) treatment for 24 h induced a 50% loss of cell viability and DNA fragmentation in 24 h. U69,593 pretreatment produced the same killing at lower concentrations, namely, 20 n M staurosporine, 2 µ M wortmannin, and 14 µ M LY294002, respectively. The effects of U69,593 were time-, dose-, and naloxone-reversible, suggesting that they are receptor-mediated. However, coaddition of U69,593 at the same time as staurosporine, wortmannin, or LY294002 did not enhance apoptosis. All three drugs that induced apoptosis were found to increase the level of ceramide, and pretreatment with U69,593 further increased the rate of formation of ceramide, a lipid that induces apoptosis in cells. We propose that chronic exposure to κ-receptor agonists promotes increased vulnerability of neurons to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号