首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A genetically engineered microorganism (GEM), Pseudomonas sp. B13 FRI (pFRC20P) (abbreviated FR120), has previously been engineered to simultaneously mineralize mixtures of methylated and chlorinated benzoic acids and phenols through a modified ortho cleavage pathway. In this study, its performance was investigated both in different types of aquatic microcosms and in pure culture to determine (1) if under simulated in situ conditions the genetically engineered pathway effectively removes mixtures of model pollutants simultaneously, quickly, and completely; (2) where the optimum pollutant concentration range for this activity lies; and (3) how physical, chemical, and biological factors in the microcosms influence degradation rates. Growth and degradation parameters of FR 120 in pure culture were determined with 3-chlorobenzoate (3CB), 4-methylbenzoate (4MB), and equimolar mixtures of both as carbon sources. These substrates were degraded simultaneously, albeit with different degradation velocities, by FR120. The optimum growth concentrations for 3CB and 4MB were 3.0 mm and 2.1 mm, respectively, and the inhibition constants (Ki) were 11 mm (3CB) and 6 mm (4MB). The pathway was induced at low concentrations of substrate (> 1 [m). The first order degradation constants (kl) were determined with respect to substrate concentration, cell density, and temperature. In aquatic microcosms inoculated with FR120, first order degradation constants and half lives of target chemicals were calculated based on the total amount of aromatics recovered. Half lives ranged from 1.3 days to 3.0 days, depending on the target chemical and the type of microcosm. Degradation constants determined in pure culture were extrapolated to the densities of FR120, substrate concentrations, and temperature occurring in the microcosm experiments, and used to calculate theoretical half lives. In water microcosms, theoretical and observed half lives corresponded well, indicating that FR120 functioned optimally in this environment. In whole core sediment microcosms, and especially at low cell densities, the observed degradation activity was in some cases considerably higher than expected from pure culture degradation rates. This suggests that environmental conditions in the sediment were more favorable to the degradation of substituted aromatics than those in pure culture. The physiological characteristics of FR120 and its performance in aquatic microcosms make it a good candidate for bioremediation at sites contamninated with mixtures of chlorinated and methylated aromatics. Correspondence to: I. Wagner-Döbler  相似文献   

3.
4.
Abstract 3-Chlorobenzoate (3CB) was incompletely degraded by bacterial cultures growing continuously with benzoate (Ben) or 3-methylbenzoate (3MB). Accumulation of chlorocatechols as dead-end metabolites was avoided if, prior to the exposure to 3CB, the population had been supplemented with Pseudomonas sp. strain B13 as a chlorocatechol-assimilating member. After acclimatisation, the substrate mixture Ben/3CB was completely degraded via 2 compatible ortho -cleavage pathways.
In contrast, 3MB and 3CB were found to be incompatible substrates: as a result of suicide and genetic inactivation of catechol 2,3-dioxygenase, methylcatechols are subject to unproductive ortho -cleavage. In a defined mixed culture ( Pseudomonas putida mt-2 plus strain B13), 4-carboxymethyl-2-methylbut-2-en-4-olide and 4-carboxymethyl-4-methylbut-2-en-4-olide were excreted as dead-end products, whereas in an undefined mixed culture, degraders of these metabolites became stable members of the community.
Characteristically, with increasing 3CB load, the relative number of 3CB-degrading organisms increased which were Ben+ or 3MB+ and which had acquired from Pseudomonas sp. strain B13 the ability to assimilate chlorocatechols.  相似文献   

5.
Degradation of 3-chlorobenzoic acid (3CB), 4-chlorobenzoic acid (4CB), and 4-methylbenzoic acid (4MB) as single substrates (carbon sources) and as a substrate mixture were studied in batch and continuous culture using the genetically modified microorganism Pseudomonas sp. B13 FR1 SN45P. The strain was able to mineralize the single compounds as well as the substrate mixture completely. Conversion of the three compounds in the substrate mixture proceeded simultaneously. Maximum specific substrate conversion rates were calculated to be 0.9 g g(-1) h(-1) for 3 CB and 4CB and 1.1 g g(-1) h(-1) for 4MB. Mass balances indicated the transient accumulation of pathway intermediates during batch cultivations. Hence, the rate limiting step in the degradative pathway is not the initial microbial attack of the original substrate or its transport through the cell membrane. Degradation rates on 3CB were comparable to those of the parent strain Pseudomonas sp. B13. The stability of the degradation pathways of strain Pseudomonas sp. B13 FR1 SN45P could be demonstrated in a continuous cultivation over 3.5 months (734 generation times) on 3CB, 4MB, and 4CB, which were used as single carbon sources one after the other.  相似文献   

6.
Biodegradation of tert-butylphenyl diphenyl phosphate.   总被引:2,自引:2,他引:0       下载免费PDF全文
The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of our studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [14C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14CO2. Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14CO2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14CO2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP in these microcosms. Indigenous heterotrophic and BPDP-utilizing microbial populations and phosphoesterase enzyme activities were highest in sediments which had the highest biodegradation of BPDP. We observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals.  相似文献   

7.
Genetically engineeredErwinia carotovora persisted significantly longer in thermally perturbed microcosms (35 days) than in nonstressed microcosms (5 days). Decreased pressure of competitors and predators and increased nutrient availability were examined as the most probable reasons for greater vulnerability of perturbed microcosms to colonization by genetically engineered microorganisms (GEMs). Indigenous bacteria that competed with GEMs for the same nutrient sources (protein, cellulose, pectate) were present immediately after perturbation in densities one to two orders of magnitude lower than in unperturbed microcosms, but their populations increased to densities significantly higher than in unperturbed microscosms 10 to 15 days after inoculation. Predators of bacteria (protozoans, cladocerans, nematodes, and rotifers) were present during the experiment in unperturbed microcosms, while dense populations of bacteriovorous nanoflagellates developed in perturbed microcosms. Preemptive inoculation of perturbed microcosms with GEMs did not have a longlasting effect on the recovery of total, proteolytic, cellulolytic, and pectolytic bacteria in perturbed microscosms, indicating the absence of competitive exclusion.  相似文献   

8.
The biodegradation of tert-butylphenyl diphenyl phosphate (BPDP) was examined in microcosms containing sediment and water from five different ecosystems as part of our studies to elucidate the environmental fate of phosphate ester flame retardants. Biodegradation of [14C]BPDP was monitored in the environmental microcosms by measuring the evolution of 14CO2. Over 37% of BPDP was mineralized after 8 weeks in microcosms from an ecosystem which had chronic exposure to agricultural chemicals. In contrast, only 1.7% of BPDP was degraded to 14CO2 in samples collected from a noncontaminated site. The exposure concentration of BPDP affected the percentage which was degraded to 14CO2 in microcosms from the two most active ecosystems. Mineralization was highest at a concentration of 0.1 mg of BPDP and was inhibited with 10- and 100-fold higher concentrations of BPDP in these microcosms. Indigenous heterotrophic and BPDP-utilizing microbial populations and phosphoesterase enzyme activities were highest in sediments which had the highest biodegradation of BPDP. We observed adaptive increases in both microbial populations and phosphoesterase enzymes in some sediments acclimated to BPDP. Chemical analyses of the residues in the microcosms indicated undegraded BPDP and minor amounts of phenol, tert-butylphenol, diphenyl phosphate, and triphenyl phosphate as biodegradation products. These data suggest that the microbial degradation of BPDP results from at least three catabolic processes and is highest when low concentrations of BPDP are exposed to sediment microorganisms of eutrophic ecosystems which have high phosphotri- and diesterase activities and previous exposure to anthropogenic chemicals.  相似文献   

9.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

10.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

12.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

13.
The efficacy of using genetically engineered microbes (GEMs) to degrade recalcitrant environmental toxicants was demonstrated by the application of Pseudomonas putida PP0301(pR0103) to an Oregon agricultural soil amended with 500 micrograms/g of a model xenobiotic, phenoxyacetic acid (PAA). P. putida PP0301(pR0103) is a constitutive degrader of 2,4-dichlorophenoxyacetate (2,4-D) and is also active on the non-inducing substrate, PAA. PAA is the parental compound of 2,4-dichlorophenoxyacetic acid (2,4-D) and whilst the indigenous soil microbiota degraded 500 micrograms/g 2,4-D to less than 10 micrograms/g, PAA degradation was insignificant during a 40-day period. No significant degradation of PAA occurred in soil inoculated with the parental strain P. putida PP0301 or the inducible 2,4-D degrader P. putida PP0301(pR0101). Moreover, co-amendment of soil with 2,4-D and PAA induced the microbiota to degrade 2,4-D; PAA was not degraded. P. putida PP0301-(pR0103) mineralized 500-micrograms/g PAA to trace levels within 13 days and relieved phytotoxicity of PAA to Raphanus sativus (radish) seeds with 100% germination in the presence of the GEM and 7% germination in its absence. In unamended soil, survival of the plasmid-free parental strain P. putida PP0301 was similar to the survival of the GEM strain P. putida PP0301(pR0103). However, in PAA amended soil, survival of the parent strain was over 10,000-fold lower (< 3 colony forming units per gram of soil) than survival of the GEM strain after 39 days.  相似文献   

14.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

15.
Genetically engineered Pseudomonas sp. strain B13(FR1) was released into laboratory-scale marine ecosystem models (microcosms). Survival of the introduced population in the water column and the sediment was determined by plating on a selective medium and by quantitative competitive PCR. The activity of the released bacteria was determined by in situ hybridization of single cells with a specific rRNA-targeting oligonucleotide probe. Two microcosms were inoculated with 10(6) cells ml-1, while an uninoculated microcosm served as a control. The number of Pseudomonas sp. strain B13(FR1) cells decreased rapidly to ca. 10(2) cells ml-1 within 2 days after the release, which is indicative of grazing by protozoa. Three days after the introduction into seawater, cells were unculturable, but PCR continued to detect cells in low numbers. Immediately after the release, the ribosomal content of Pseudomonas sp. strain B13(FR1) corresponded to a generation time of 2 h. The growth rate decreased to less than 0.04 h-1 in 5 days and remained low, probably because of carbon limitation of the cells. Specific amendment of the microcosms with 10 mM 4-chlorobenzoate resulted in a rapid increase of the growth rate and an exponentially increasing number of cells detected by PCR, but not in resuscitation of the cells to a culturable state. The release of Pseudomonas sp. strain B13(FR1) into the microcosms seemed to affect only the indigenous bacterioplankton community transiently. Effects on the community were also apparent from the handling of water during filling of the microcosms and the amendment with 4-chlorobenzoate.  相似文献   

16.
Pseudomonas putida mt-2, harbouring the TOL plasmid PWW0, was grown continuously on benzoate in a phauxostat at a non-limited rate. The gradual decrease in the population carrying the complete TOL plasmid was caused predominantly by a growth-rate advantage of spontaneous mutants carrying a partially deleted plasmid (TOL- cells). The growth-rate difference (v) was quantified both by measuring the increase in the dilution rate (from 0.68 to 0.79 h-1; v = 0.11 h-1) and by mathematical analysis of the ingrowth of TOL- cells (v = 0.12 h-1). The latter procedure also established that the segregation rate was of the order of magnitude 10(-5) h-1. Similar values for the growth-rate advantage and the segregation rate were found when both benzoate and succinate were present in non-limiting concentrations. It is suggested that the growth-rate disadvantage of the wild-type strain is caused by inhibitory effects of an intermediate in the degradation of benzoate via the plasmid-encoded meta-pathway.  相似文献   

17.
New Planococcus sp. strain S5 able to grow on salicylate or benzoate as sole carbon source was isolated from activated sludge adapted to sodium salicylate degradation. S5 was determined to be a strictly aerobic, gram-positive, catalase positive, oxidase negative, non-motile, non-spore forming coccus. The strain harboured a plasmid, named pLS5. The S5 strain when grown on salicylate expressed both catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities and degraded this substrate by both the ortho and meta pathways while grown on benzoate expressed only catechol 1,2-dioxygenase activity. Curing of the plasmid from the strain showed that plasmid pLS5 was involved in salicylate degradation by the meta pathway.  相似文献   

18.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the present study, an endosulfan degrading strain Paenibacillus sp. ISTP10 was isolated from activated sludge. Soil microcosms were set up with endosulfan (60 mg kg−1 of dry soil) to evaluate the degradation potency of the strain. Soil samples from the microcosms were collected at regular intervals and the organic compounds were extracted with hexane. GC–MS analysis of the soil extract showed the formation of metabolites of endosulfan such as endosulfan diol and endosulfan ether confirming that the strain degrades endosulfan via a hydrolytic pathway. Methyl tetrazolium (MTT) assay for cytotoxicity and alkaline comet assay for genotoxicity were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of endosulfan and its degraded metabolites. The bacterium reduced toxicity as determined by an increase in LC50 value by 75.86 fold and a reduction in Olive Tail Moment by 21 fold after 30 days of treatment. The by-products of degradation were found to be less toxic than the parent compound showing the biodegradation and detoxification potential of endosulfan by Paenibacillus sp. ISTP10.  相似文献   

20.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号