首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Wang  C K Mathews 《Journal of virology》1989,63(11):4736-4743
The roles of bacteriophage T4-encoded thymidylate synthase and dihydrofolate reductase as virion structural components have been further investigated. Two mutants, del(63-32)7 and del(63-32)9, bearing deletions in the gene 63 to 32 region of the T4 genome, were characterized by Southern blotting analysis, as well as by enzyme and immunological assays. Our results have confirmed the original report of Homyk and Weil (Virology 61:505-523, 1974) that del7 and del9 each carries a deletion of about 4.0 kilobases, which totally eliminates the frd gene, encoding dihydrofolate reductase, and the td gene, encoding thymidylate synthase. With the well-characterized deletion mutants, along with newly prepared antisera against T4-encoded thymidylate synthase and dihydrofolate reductase, we have reevaluated the experimental results supporting the idea that T4-induced dihydrofolate reductase and thymidylate synthase are essential T4 baseplate components and antigenic determinants of phage particles. These deletion mutant phages are not targets for neutralization by antisera against either dihydrofolate reductase or thymidylate synthase purified from cloned genes. Furthermore, these newly prepared antisera also cannot neutralize the infectivity of T4D. Those results suggest that the phage-neutralizing components in the old antisera used in the earlier studies were not antibodies against either dihydrofolate reductase or thymidylate synthase but were antibodies against minor components of the purified enzyme preparations. Study of the biological properties of the deletion mutants indicates that T4-induced thymidylate synthase and dihydrofolate reductase play significant roles in growth of the phage beyond their known roles in nucleotide biosynthesis, even though they are apparently not essential for phage viability. The deletion mutants should be useful in defining these roles.  相似文献   

2.
A 2.0-kb fragment of Bacillus subtilis 168 chromosomal DNA has been shown to contain both the dihydrofolate reductase (dfrA) and thymidylate synthase B (thyB) genes. In addition to the close proximity of dfrA and thyB, the expression of these genes seems to be regulated coordinately. Mutations that map near or within the dfrA gene resulted in coordinate increases in both dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase and thymidylate synthase B activities. Also, when trimethoprim, a specific inhibitor of dihydrofolate reductase, was added to growing cells, both dihydrofolate reductase and thymidylate synthase B activities increased coordinately.  相似文献   

3.
4.
F K Chu  G F Maley  A M Wang  F Maley 《Gene》1987,57(1):143-148
The nucleotide (nt) sequence in a 757-bp [corrected] segment downstream from the intron-containing T4 phage thymidylate synthase gene (td) has been determined. This region was found to contain two open reading frames (ORFs). The first ORF(ORF2) [corrected] 261 bp [corrected] in length, is 24 [corrected] nt downstream from the td gene. The second ORF(ORF3) [corrected]) is 200 bp long at 558 [corrected] nt from the td gene and extends to the end of the Eco RI fragment. The amino acid (aa) sequence (66 aa residues) deduced from the second truncated ORF shows 59% homology to the sequence of the N-terminal portion of the ribonucleotide reductase large subunit of either Escherichia coli (B1 subunit) or mouse (M1 subunit). This tentatively identifies the truncated gene to be the 5' end of the T4 phage ribonucleotide reductase subunit B1 (nrdA) gene and pinpoints its exact location on the T4 phage genomic map. Southern hybridization analysis suggests good sequence homology among the nrdA genes of various T-even phages.  相似文献   

5.
Currently, there is no effective therapy for cryptosporidiosis and it is unclear why antifolate drugs which are effective treatments for infections caused by closely related parasites are not also effective against Cryptosporidium parvum. In protozoa, the target of these drugs, dihydrofolate reductase (DHFR), exists as a bifunctional enzyme also manifesting thymidylate synthase (TS) activity and is encoded by a fused DHFR-TS gene. In order to prepare a probe to isolate the C. parvum DHFR-TS gene we have used degenerate oligonucleotides whose sequences are based on strongly conserved regions of TS protein sequence to prime the polymerase chain reaction (PCR) with C. parvum DNA. The PCR amplified a 375-bp DNA fragment which was cloned and sequenced; the deduced amino acid sequence had significant identity with known TS sequences, including strict conservation of all phylogenetically invariant TS amino acid residues. The cloned PCR fragment was used as a probe to isolate a number of overlapping clones from a C. parvum genomic library which were definitively shown to be of cryptosporidial origin by genomic Southern and molecular karyotype analyses. The deduced protein sequence of C. parvum TS was most similar to the bifunctional TS enzymes of Plasmodium chabaudi and Plasmodium falciparum.  相似文献   

6.
The bacteriophage T4 gene nrdB codes for the small subunit of the enzyme ribonucleotide reductase. The T4 nrdB gene was localized between 136.1 kb and 137.8 kb in the T4 genetic map according to the deduced structural homology of the protein to the amino acid sequence of its bacterial counterpart, the B2 subunit of Escherichia coli. This positions the C-terminal end of the T4 nrdB gene approximately 2 kb closer to the T4 gene 63 than earlier anticipated from genetic recombinational analyses. The most surprising feature of the T4 nrdB gene is the presence of an approximately 625 bp intron which divides the structural gene into two parts. This is the second example of a prokaryotic structural gene with an intron. The first prokaryotic intron was reported in the nearby td gene, coding for the bacteriophage T4-specific thymidylate synthase enzyme. The nucleotide sequence at the exon-intron junctions of the T4 nrdB gene is similar to that of the junctions of the T4 td gene: the anticipated exon-intron boundary at the donor site ends with a TAA stop codon and there is an ATG start codon at the putative downstream intron-exon boundary of the acceptor site. In the course of this work the denA gene of T4 (endonuclease II) was also located.  相似文献   

7.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

8.
9.
10.
In this study we used site-directed mutagenesis to test the hypothesis that substrate channeling in the bifunctional thymidylate synthase-dihydrofolate reductase enzyme from Leishmania major occurs via electrostatic interactions between the negatively charged dihydrofolate produced at thymidylate synthase and a series of lysine and arginine residues on the surface of the protein. Accordingly, 12 charge reversal or charge neutralization mutants were made, with up to 6 putative channel residues changed at once. The mutants were assessed for impaired channeling using two criteria: a lag in product formation at dihydrofolate reductase and an increase in dihydrofolate accumulation. Surprisingly, none of the mutations produced changes consistent with impaired channeling, so our findings do not support the electrostatic channeling hypothesis. Burst experiments confirmed that the mutants also did not interfere with intermediate formation at thymidylate synthase. One mutant, K282E/R283E, was found to be thymidylate synthase-dead because of an impaired ability to form the covalent enzyme-methylene tetrahydrofolate-deoxyuridate complex prerequisite for chemical catalysis.  相似文献   

11.
The T4 phage td intron-encoded endonuclease (I-Tev I) cleaves the intron-deleted td gene (td delta I) 23 nucleotides upstream of the intron insertion site on the noncoding strand and 25 nucleotides upstream of this site on the coding strand, to generate a 2-base hydroxyl overhang in the 3' end of each DNA strand. I-Tev I-157, a truncated form in which slightly more than one third (88 residues) of the endonuclease is deleted, was purified to homogeneity and shown to possess endonuclease activity similar to that of I-TEV I, the full-length enzyme (245 residues). The minimal length of the td delta I gene that was cleaved by I-Tev I and I-Tev I-157 has been determined to be exactly 39 basepairs, from -27 (upstream in exon1) to +12 (downstream in exon2) relative to the intron insertion site. Similar to the full-length endonuclease, I-Tev I-157 cuts the intronless thymidylate synthase genes from such diverse organisms as Escherichia coli, Lactobacillus casei and the human. The position and nature of the in vitro endonucleolytic cut in these genes are homologous to those in td delta I. Point mutational analysis of the td delta I substrate based on the deduced consensus nucleotide sequence has revealed a very low degree of specificity on either side of the cleavage site, for both the full-length and truncated I-TEV I.  相似文献   

12.
Growth of a Dihydrofolate Reductaseless Mutant of Bacteriophage T4   总被引:5,自引:5,他引:0       下载免费PDF全文
A mutant of bacteriophage T4 was isolated which was unable to induce virus-specific dihydrofolate reductase in infected cells. The mutant was able to form several other early enzymes of pyrimidine metabolism. Growth of the mutant in a wild-type host, Escherichia coli B, was compared with that of the parent strain, T4BO(1), and T4td8, a mutant which lacks the ability to induce thymidylate synthetase. Growth studies were carried out in minimal medium, which gave higher growth rates and phage yields than the supplemented media used in previous studies. The reductase mutant formed deoxyribonucleic acid and plaque-forming particles at a rate slightly higher than the synthetase mutant but 1.5-to 2-fold lower than that of the wild-type phage under all conditions studied. The addition of thymine to a culture infected by the mutant increased the growth rate significantly, suggesting that the genetic lesion leads to a partial thymidylate deficiency. Like other viral genes controlling steps in thymidylate metabolism, the dihydrofolate reductase gene appears to be useful but not completely essential for growth.  相似文献   

13.
The gene encoding dihydrofolate reductase, hdrA, from the extremely halophilic archaeon Haloferax volcanii was previously isolated from a spontaneous trimethoprim-resistant mutant in a DNA sequence that had undergone amplification. Here, we show that deletion of hdrA did not affect growth in minimal medium and that the strain carrying the deletion remained sensitive to trimethoprim. A spontaneous trimethoprim-resistant colony was isolated in the hdrA deletion strain and found to possess a new DNA amplification. Sequencing of the amplification revealed a second, substantially different, dihydrofolate reductase gene, hdrB, which was found to be located immediately downstream of the thymidylate synthase gene, hts. The physiological role of hDHFR-1 and hDHFR-2 was determined by generating Haloferax volcanii strains in which each gene, hdrA or hdrB, or both genes were deleted. It was found that hdrB alone can support growth of Haloferax volcanii in minimal medium, whereas hdrA alone can support growth of Haloferax volcanii in minimal medium only when the medium is supplemented with thymidine. It was also shown that, in contrast to Escherichia coli, the DeltahdrA, DeltahdrB double deletion mutant is viable in the presence of a functional thymidylate synthase gene. The hdrB gene was overexpressed in Escherichia coli and the enzyme purified to homogeneity. The biochemical properties of the new enzyme (hDHFR-2) are markedly different from those of hDHFR-1. The use of the dihydrofolate reductase and thymidylate synthase genes as stable selectable markers is described.  相似文献   

14.
An important unresolved issue in antifolate pharmacology is the basis for the observation that the major portion of cellular tetrahydrofolate cofactors is preserved after dihydrofolate reductase activity is abolished by antifolates despite the fact that tetrahydrofolate cofactor-dependent purine and pyrimidine biosynthesis ceases. This has been attributed to feedback inhibition of thymidylate synthase by dihydrofolate polyglutamates that accumulate in the presence of antifolates. This report combines network thermodynamic modeling and experimental observations to evaluate the effects of direct inhibition of thymidylate synthase at the 5,10-methylenetetrahydrofolate binding site with a potent lipophilic quinazoline antifolate PD130883 on folate oxidation in cells. Computer simulations predict and the data indicate that marked PD130883 suppression of thymidylate synthase only slows the rate but not the extent of tetrahydrofolate cofactor interconversion to dihydrofolate upon complete suppression of dihydrofolate reductase with trimetrexate. These observations are consistent with earlier studies from this laboratory with fluorodeoxyuridine inhibition at the deoxyuridylate binding site. Hence, the much weaker inhibition by dihydrofolate polyglutamates at the level of thymidylate synthase cannot account for the apparent preservation of tetrahydrofolate cofactor pools in cells and has virtually no pharmacologic significance under conditions in which antifolates completely suppress dihydrofolate reductase. The extent of interconversion of tetrahydrofolate cofactors to dihydrofolate is strongly influenced by residual dihydrofolate reductase catalytic activity. Exposure of cells to 0.1 microM trimetrexate results in only approximately 60% of maximum dihydrofolate levels achieved when dihydrofolate reductase activity is abolished. Network thermodynamic simulations predict, and experiments verify, that inhibition of thymidylate synthase at the 5,10-methylenetetrahydrofolate site by PD130883, when dihydrofolate reductase is only partially suppressed (approximately 85%) with 0.1 microM trimetrexate, substantially decreases (31-47%) the net level of interconversion of tetrahydrofolate cofactors to dihydrofolate. Further computer simulations predict that under conditions in which residual dihydrofolate reductase activity persists within the cells (more than about 5%), feedback inhibitory effects of dihydrofolate polyglutamates as well as other weak inhibitors of thymidylate synthase can significantly limit the extent of net interconversion of tetrahydrofolate cofactors to dihydrofolate and produce an apparent "compartmentation phenomenon" in which tetrahydrofolate cofactor pools are preserved within the cell in the presence of antifolates. Residual dihydrofolate reductase activity cannot, however, account for the partial interconversion of tetrahydrofolate cofactors to dihydrofolate after exposure to high trimetrexate or methotrexate levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The phage T4 thymidylate synthase (td) gene contains an intron open reading frame that encodes a 245-amino acid-long basic protein (Chu, F. K., Maley, G. F., West, D. K., Belfort, M., and Maley, F. (1986) Cell 45, 157-166). The open reading frame (Irf) has been cloned as a fusion protein behind a phage T7 promoter and overexpressed in Escherichia coli. The amplified Irf protein is associated with insoluble inclusion bodies and migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis about 7 kDa smaller than expected. Data obtained from DNA sequencing, amino acid sequencing of the fusion protein, and carboxypeptidase Y digestion suggest that although the cloned gene is not altered and the protein is made from the expected start codon, it appears to terminate about 90 amino acids before the encoded stop codon. Proteolytic cleavage during or soon after synthesis appears to be responsible for the truncated Irf. The expressed protein is solubilized in guanidine HCl and renatured by dialysis against high salt. This partially purified preparation has been found to contain a DNA endonuclease activity specific for the td delta I gene, which contains a precise deletion of the intron.  相似文献   

16.
We report that the gene for thymidylate synthase (TS) is amplified in the mouse cell line L1210:C15 that was selectively grown in increasing concentrations of the competitive inhibitor of thymidylate synthase, CB3717. The gene is amplified 50-fold compared to the parental cell line. Amplification has not been accompanied by any major rearrangements, and the increase in gene copy number is reflected in elevation of thymidylate synthase mRNA levels. The amplification is relatively stable as there was only a 2- to 3-fold decrease in the number of amplified TS genes when cells were grown in the absence of selection for 375 generations. We also observe a 30- to 40-fold increase in number of copies of the dihydrofolate reductase gene with 7-fold elevation of the RNA product, and we suggest that this may be due to cross-inhibition of dihydrofolate reductase by CB3717. Thymidylate synthase mRNA levels in L1210 and L1210:C15 show no variation within the different phases of the cell cycle but are significantly reduced during quiescence.  相似文献   

17.
This paper is concerned with the physiological role(s) of T4 phage-coded dihydrofolate reductase, which functions both in DNA precursor metabolism and as a virion protein. (i) We have detected enzyme activity in noninfectious particles produced under restrictive conditions by gene 11 mutants. This supports the conclusion of Kozloff et al. (J. Virol. 16:1401-1408, 1975) that the protein lies in the baseplate, covered by the gene 11 protein. (ii) We have obtained further evidence for virion dihydrofolate reductase as the target for neutralizing activity of T4 dihydrofolate reductase antiserum and as a determinant of the heat lability of the virion. This derives from our observation that the reductases specified by T4B and T4D differ in several properties. (iii) We have investigated several anomalous properties of T4 mutants bearing deletions that reportedly extend into or through the frd gene, which codes for dihydrofolate reductase. Evidence is presented that the deletions in fact do not extend through frd. These strains direct the synthesis of material that cross-reacts with antiserum to homogeneous dihydrofolate reductase. Moreover, they are all quite sensitive to the phage-neutralizing effects of this antiserum. In addition, they are restricted by several of the hospital strains, wild-type strains of Escherichia coli supplied by the California Institute of Technology group. (iv) We have attempted to detect dihydrofolate reductase among early-synthesized proteins present in T4 tails. Two such proteins are seen, one of which is evidently the gene 25 product and one that is a bacterial protein. Quantitation of our electrophoretic technique has allowed determination of the number of molecules of some T4 tail components present per virion. (v) Finally, we have compared the T4 dihydrofolate reductase with the corresponding enzyme specified by two plasmids conferring resistance to trimethoprim (Skold and Widh, J. Biol. Chem. 249:4324-4325, 1974). Although the enzymes are similar in some properties, they differ in several important respects, including immunological activity.  相似文献   

18.
Secretion cloning vectors in Escherichia coli   总被引:32,自引:4,他引:28       下载免费PDF全文
The DNA fragment coding for the signal peptide of the OmpA protein, a major outer membrane protein of Escherichia coli, has been inserted into the high-level expression vectors, pIN-III. A foreign DNA fragment can be cloned in any one of the three reading frames at the unique EcoRI, HindIII or BamHI sites immediately after the ompA signal peptide coding sequence. The cloned foreign gene is under the control of both the lpp promoter and the lac promoter-operator. The expression of the gene is regulated by the lac repressor produced by the same vectors. Using the pIN-III-ompA vector, the DNA fragment coding for only the mature portion of beta-lactamase was inserted into the EcoRI site. Upon induction of gene expression, beta-lactamase was secreted into the periplasmic space. The ompA signal peptide was correctly removed resulting in the production of beta-lactamase with four extra amino acid residues (Gly-Ile-Pro-Gly) at its amino terminus due to the linker sequence in the vector. After a 3-h induction, beta-lactamase was accumulated to 20% of total cellular protein without any detectable accumulation of pro-beta-lactamase. Using oligonucleotide-directed site-specific mutagenesis, we have also removed the linker sequence and upon induction of gene expression, beta-lactamase with the authentic NH2-terminal sequence was produced, in even larger amounts than the beta-lactamase with the linker sequence.  相似文献   

19.
Leishmania tropica promastigotes selected for resistance to the dihydrofolate reductase inhibitor, methotrexate, or the thymidylate synthase inhibitor, 5,8-dideaza-10-propargyl folate, overproduce a bifunctional thymidylate synthase-dihydrofolate reductase and possess a 30-kilobase region of amplified DNA. Five fragments, resulting from BglII digestion of this amplified DNA, were cloned into vectors and utilized as probes to examine mRNA in these organisms. Four mRNA species which hybridize to the amplified DNA sequences were found in both resistant and wild-type Leishmania, but were about 40-fold more abundant in the drug-resistant cells. Three of the four mRNAs are transcribed from the same strand of DNA, are clustered, and appear to have partial overlapping sequences. The thymidylate synthase-dihydrofolate reductase gene was localized to a specific region of the amplified unit of DNA by hybridization with mouse cDNA containing thymidylate synthase sequences and with a synthetic oligonucleotide 41 nucleotides in length, prepared on the basis of the partial amino acid sequence of the Leishmania enzyme. Furthermore, mRNA hybrid-selected using a plasmid containing sequences of the putative gene was shown to direct in vitro synthesis of the bifunctional protein.  相似文献   

20.
A hybrid plasmid, pDB2, was constructed by ligating a 3.24 kb EcoRI/HindIII fragment of the Escherichia coli chromosome into pBR322. This was used to transform a gltA mutant which was devoid of citrate synthase activity. The resultant strain expressed very high citrate synthase activity and this enabled a simplified purification of the homogeneous enzyme in high yield. The subunit Mr was estimated as 47000-49000 by SDS gel electrophoresis, which closely resembles the eukaryotic form of the enzyme. Evidence for some conservation of sequence between the two proteins was revealed in the acid cleavage pattern at aspartyl-prolyl residues. In addition to coding for the structural gene for citrate synthase, the 3.24 kb EcoRI/HindIII fragment also retained the genetic structure necessary for control of enzyme synthesis since the expression of enzyme activity in the strain harbouring pDB2 was still subject to glucose repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号