首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Small Ruminant Research》2009,82(2-3):100-104
The objectives of the study were to determine a practical method of using predetermined sexed semen in Sika deer (Cervus nippon). Semen was collected by electro-ejaculation from two Sika stags and transported to the laboratory and separated into X- and Y-chromosome-bearing sperm after analysis and re-analysis (using a modified high-speed cell sorter), or control (unsorted) semen. Eighty-four Sika hinds were inseminated with 2.8 × 107 unsorted (control) or 2.3 × 106 sorted (X or Y) frozen-thawed semen via intra-uterine laparoscopy 58–66 h after removal of intra-vaginal progesterone-impregnated CIDR devices and the administration of 330 IU PMSG at the time of CIDR removal. No significant differences in the post-thaw motility of control (43.4 ± 4.4%), X- (45.3 ± 4.5%) and Y-sorted (43.5 ± 3.2%) samples were recorded. The sorted frozen-thawed sperm (X, 72.5 ± 6.4%: Y, 75.2 ± 5.5%) recorded significantly (P < 0.05) more intact acrosomes following thawing than the unsorted frozen-thawed (68.2 ± 10.2%) sperm. The individual Sika stags had no effect on the post-thaw sperm motility. Sorted frozen-thawed sperm demonstrated a significantly shorter survival time after thawing than the control sperm (P < 0.05). The number of Sika hinds pregnant following insemination with unsorted or control thawed sperm was significantly higher (33/42; 78.6%) than for hinds inseminated with either X- (5/11; 45.5%) or Y-sorted sperm (15/31; 48.4%). Ultimately 14 out of the 15 calves produced by Sika hinds inseminated with Y-sorted sperm were male (92.9%) and 5/5 calves (100%) from Sika hinds inseminated with X-sorted sperm were female. The sex ratio of the calves born to hinds inseminated with sex-sorted sperm significantly (P < 0.05) deviated for the 48.5% (female, 16/33) and 51.5% (male, 17/33) in the control group. All calves were born between 230 d and 243 d of gestation. Male and female calves in the control group had similar birth and weaning weights as calves from hinds inseminated with X- or Y-sorted sperm. In conclusion it can be said that normal calves of the predicted sex may be produced after intra-uterine insemination conducted by laparoscopy with low numbers of sex-sorted cryopreserved Sika sperm.  相似文献   

2.
The purpose of this study was to determine a practical method in Wapiti (Cervus elaphus) of using predetermined sexed Sika (Cervus nippon) semen. Semen was collected by electro-ejaculation from one stag of proven fertility and transported to the laboratory where it was retained as unsorted (control) or was separated into X- and Y-chromosome-bearing sperm using a modified high-speed cell sorter. Wapiti hinds (n = 81) were inseminated into the uterus by rectum manipulation with 1 × 106 (X1 and Y1 group, respectively) or 2 × 106 (X2 and Y2 group, respectively) of sorted frozen-thawed and 1 × 107 non-sorted frozen-thawed (a commercial dose control) Sika motile sperm 60–66 h after removal of intra-vaginal progesterone-impregnated CIDR devices and administration of 700 IU of PMSG at the time of CIDR removal. The percentage of hinds calving after insemination was similar for X1 (38.5%), X2 (41.7%), Y1 (44.4%), Y2 (38.9%) groups (P > 0.05), but higher for control (75%) treatment (P < 0.05). Ultimately 15 out of the 16 Sika and Wapiti-hybrid calves produced by Wapiti hinds inseminated with Y-sorted sperm were male (93.7%) and 10/10 (100%) Sika and Wapiti-hybrid calves from hinds inseminated with X-sorted sperm were female. The sex ratio of the Sika and Wapiti-hybrid calves born to hinds inseminated with sex-sorted sperm deviated significantly (P < 0.05) from 50% and 50.0% in the control group. All Sika and Wapiti-hybrid calves were born between 237 and 250 d of gestation. Male and female calves in the control group had similar birth weights and weaning weights as calves from hinds inseminated with X- or Y-sorted sperm. In conclusion it can be said that normal Sika and Wapiti-hybrid calves of predicted sex can be produced after artificial insemination of Wapiti does with low numbers of sex-sorted cryopreserved Sika sperm.  相似文献   

3.
It has been reported that the mammalian female could have a preconceptual influence on the sex of her offspring, and it has been hypothesized that this influence could go some way toward accounting for the reported lower fertility following insemination with sex-sorted sperm. To test whether in vitro matured oocytes are able to select X- or Y-bearing spermatozoa following in vitro fertilization (IVF), we fertilized in vitro 1788 oocytes with X-sorted semen, Y-sorted semen, a mix of X- and Y-sorted semen, and unsorted semen from the same bull, and cultured until Day 9. Fertility was assessed by recording cleavage rate at 48 h postinsemination (hpi) and blastocyst development until Day 9. Embryos were sexed at the two- to four-cell stage and the blastocyst stage. The proportion of zygotes cleaving at 48 hpi was not different between X- and Y-sorted groups and the mix of X- and Y-sorted semen group; however, all were significantly lower than the unsorted group (P < 0.001). Blastocyst yield on Day 6 was significantly higher (P < or = 0.01) in the control group compared with the rest of the groups. Cumulative blastocyst yields on Days 7, 8, and 9 were also significantly higher (P < or = 0.01) in the unsorted group compared with the sorted groups. The proportion of female and male two- to four-cell embryos obtained following IVF with X- and Y-sorted sperm was 88% and 89%, respectively and the sex ratio at the two- to four-cell stage was not different following IVF with unsorted or sorted/recombined sperm (56.9% males vs. 57% males, respectively). At the blastocyst stage, similar percentages were obtained. In conclusion, the differences in cleavage and blastocyst development using sorted versus unsorted sperm are not due to the oocyte preferentially selecting sperm of one sex over another, but are more likely due to spermatic damage caused by the sorting procedure.  相似文献   

4.
Single bovine sperm sex typing by amelogenin nested PCR   总被引:1,自引:0,他引:1  
Sex-sorted bovine semen has become a valuable tool in animal production for sex preselection. Development of novel sperm sexing technologies, or evaluation of the quality of existing methods, often requires a single-sperm, sex-typing method that is reliable and easy to perform. In the present study, we report the development, validation, and application of a simple, reliable, and cost-effective method for single-sperm sex typing using nested polymerase chain reaction (PCR), based on the amelogenin gene. Several hundred single sperm were isolated using a simple manual technique, or a high-speed flow-sorter, and were successfully sex-typed using the amelogenin nested PCR. Based on the pooled results of individual sperm, there was no significant difference in the semen sex ratio of unsorted (44.6% X-sperm and 55.4% Y-sperm) or X/Y-sorted semen (91.4% X-sperm and 94.0% Y-sperm), as compared to the expected ratio in unsorted semen or the post-sorting reanalysis data, respectively. The amelogenin single-sperm sexing method was an adaptable, accurate, and reliable tool for single-sperm sex typing.  相似文献   

5.
The objectives were to determine the efficacy of the HeatWatch (HW) electronic estrus detection system for monitoring behavioral estrus (including duration and intensity) in red deer hinds and to evaluate pregnancy rate to AI after detected estrus. Red deer hinds (Cervus elephus; n = 50) were allocated into two treatment groups: AI following synchronization (CIDR/PMSG) and observed estrus (induced estrus group: IE; n = 25) or AI following the detection of natural estrus (NE; n = 25) without hormonal treatment. Hinds were fitted with two HeatWatch (HW) electronic estrus detection transmitters, one above the tail (bottom) and one between the tuber coxae of the pelvic girdle (top), and visual observations for mounting activity began with the aid of young sterile red deer stags (18 months old) fitted with marking harnesses. Hinds in both groups were inseminated (10-12h after observed estrus) with frozen-thawed red deer semen using a transvaginal/cervical AI approach. Following a 26-day period of AI, hinds were placed with a mature fertile stag for an additional 30-day natural breeding period. Pregnancy diagnosis was performed 57 and 86 days after the start of AI. While the hinds were housed with the young stags, 82% were detected in estrus by visual appraisal of stag crayon marks, but only 32% of these were detected by HW. In contrast, in the hinds housed with the mature stag, 93% detected in estrus by crayon marks were also detected by HW. The top HW transmitter consistently recorded more mounts (P < 0.05) than the bottom transmitter. The pregnancy rate was numerically better in IE versus NE hinds (42% versus 29%, P > 0.10). In summary, there were no differences (P > 0.10) in the intensity (number) or duration of mounts (detected by HW) during estrus in IE versus NE hinds, and HW was most effective in detecting estrus in the presence of a heavier, mature stag versus a younger stag. When used in combination with transvaginal AI, an overall first-service pregnancy rate of 36.6% was achieved with AI of frozen-thawed semen in red deer hinds following detected estrus.  相似文献   

6.
Embryos and offspring of a pre-determined sex have been produced in pigs using AI and IVF with unfrozen sperm, and after surgical insemination with sex-sorted frozen-thawed sperm. The aims of this study were to demonstrate that sex-sorted frozen-thawed boar sperm could be incorporated into pig IVF for the production of embryos of a pre-determined sex and that these embryos could be successfully non-surgically transferred. Oocytes were matured in vitro, fertilised with either unsorted or sex-sorted frozen-thawed sperm and cultured until the eight-cell stage. These embryos were then transferred to recipients (n = 7) non-surgically (n = 70 embryos per sow). Oocyte cleavage was similar between sex-sorted (1538/5044; 30.5%) and unsorted (216/756; 28.6%) frozen-thawed sperm, and PCR sex-determination of the embryos confirmed that they were of the predicted sex (n = 16). Delayed return to oestrus (>23 days) was observed in five recipient sows (71.4%). Fetal sacs were observed by transcutaneous ultrasound on Day 18 in one of these sows. Pre-sexed porcine IVP embryos can be successfully produced using sex-sorted frozen-thawed boar sperm, and these embryos are capable of initiating pregnancies when transferred to recipients. However, further refinement of porcine ET protocols are required to enable development to term.  相似文献   

7.
During artificial insemination of horses, it is important to accurately estimate the number of spermatozoa in each insemination dose. However, little research exists regarding sources of spermatozoa loss during collection and artificial insemination. Therefore, spermatozoal losses were quantified in the dismount loss (187.6×10(6)±62.5×10(6)spermatozoa), gel fraction (179.8×10(6)±61.7×10(6)spermatozoa), and the collection receptacle (136.1×10(6)±26.9×10(6)spermatozoa). Spermatozoal losses were examined in the centrifuge tube (25.8×10(6)±2.1×10(6)spermatozoa), AI pipette during the air removal (90.9×10(6)±8.5×10(6)spermatozoa), and spermatozoa remaining in the AI pipette after insemination (342.9×10(6)±21.4×10(6)spermatozoa). The average cumulative loss was 14.2±2.9% of the total spermatozoa ejaculated with approximately half of the loss due to the process of semen collection and half due to the process of artificial insemination. Spermatozoa retained in the AI pipette, after insemination with extended semen, represented the greatest source of loss.  相似文献   

8.
This study evaluated the influences of seasons and genotype on the superovulatory response to a standardised oFSH regimen in red deer (Cervus elaphus scoticus) and its hybrids with either wapiti (C.e. nelsoni) or Père David's (PD) deer (Elaphurus davidianus). Adult red deer (n=9), F(1) hybrid wapiti x red deer (n=6), and maternal backcross hybrid PD x red deer (i.e., 14 PD hybrid; n=9) were kept together in the presence of a vasectomised stag for 13 months. At 6 weekly intervals, all hinds received a standardised treatment regimen used routinely to induce a superovulatory response in red deer hinds, with 10 consecutive treatments spanning an entire year. This involved synchronisation with intravaginal progesterone devices and delivery of multiple injections of oFSH (equivalent to 72 units NIH-FSH-S(1)). Laparoscopy to assess ovarian response was performed 6-7 days after the removal of the devices. Both season and genotype had significant effects on ovulation rate (OR) and total follicular stimulation (TFS) (P<0.05). For all the three genotypes, ovarian responses were highest from March to November (breeding season) and lowest in the period from December to January, inclusive. Mean OR for red deer hinds ranged from 3.7 to 1.8 during the breeding season, with no observable trend. All red deer hinds were anovulatory during December and January. A similar pattern occurred for 14 PD hybrids, although mean OR during the breeding seasons were twofold lower than for the red deer. For F(1) wapiti hybrids, the first two treatments in March and April resulted in the highest mean OR observed (15.6 and 11.7, respectively). Thereafter, mean values ranged between 6.3 and 4.7 for the remainder of the breeding season. Furthermore, mean OR of 3.0 and 0.5 were recorded in December and January, respectively. For the red deer and F(1) wapiti hybrids, between-hind variation in OR was not randomly distributed across the treatment dates, indicating that the individuals varied significantly in their ability to respond to oFSH, at least within a given season.In conclusion, the study has shown that relative to red deer, F(1) wapiti hybrid hinds exhibit a higher sensitivity to oFSH, whereas 14 PD hybrid hinds have a lower sensitivity. However, individual variation within genotype was very marked. A seasonal effect was apparent for all genotypes, although some F(1) wapiti hybrid hinds exhibited ovulatory responses throughout the year.  相似文献   

9.
Flow-cytometry sorting technology has been successfully used to separate the X- and Y-chromosome bearing spermatozoa for production of sex-preselected buffalo. However, an independent technique should be employed to validate the sorting accuracy. In the present study, X-chromosomes of bovine were micro-dissected from the metaphase spreads by using glass needles. Then X-chromosomes were then amplified by PCR and labelled with Cy3-dUTP for use as a probe in hybridization of the unsorted and sorted buffalo spermatozoa -chromosome. The results revealed that 47.7% (594/1246) of the unsorted buffalo spermatozoa were positive for X- chromosome probe, which was conformed to the sex ratio in buffalo (X:Y spermatozoa=1:1); 9.6% (275/2869) of the Y-sorted buffalo spermatozoa and 86.1% (1529/1776) of the X-sorted buffalo spermatozoa showed strong X-chromosome FISH signals. Flow cytometer re-analysis revealed that the proportions of X- and Y-bearing spermatozoa in the sorted X and Y semen was 89.6% and 86.7%, respectively. There were no significant differences between results assayed by flow-cytometry re-analysis and by FISH in this study. In conclusion, FISH probe derived from bovine X- chromosomes could be used to verify the purity of X and Y sorted spermatozoa in buffalo.  相似文献   

10.
In the first experiment, osmotic pressure of semen and seminal plasma in a semen sample from each of the 20 mature Nili-Ravi buffalo bulls was determined. In the second experiment, effects of osmotic pressure on motility (%), plasma membrane integrity (%) and viability (%) in fresh and frozen-thawed semen samples from each of the seven mature Nili-Ravi buffalo bulls was determined. In the first experiment, seminal plasma was harvested by centrifuging semen at 400 × g for 10 min at 37°C and osmotic pressure was determined using an osmometer. In the second experiment, motility (%) was assessed in fresh and frozen-thawed (37°C for 30 s) semen samples using a phase-contrast microscope (×400). Plasma membrane integrity (%) was determined by mixing 50 μl each of fresh and frozen-thawed semen with 500 μl of solution having an osmotic pressure of 50, 100, 150, 190 or 250 mOsm/l (hypotonic treatments of fructose + sodium citrate) and incubating at 37°C for 1 h. Viability (%) of fresh and frozen-thawed spermatozoa before and after challenging them to osmotic pressure (hypotonic treatments) was assessed using supravital stain under a phase-contrast microscope (×400). In the first experiment, the mean ± s.e. osmotic pressures of the buffalo semen and seminal plasma were 268.8 ± 1.17 and 256.0 ± 1.53 mOsm/l, respectively. In the second experiment, motility (%) decreased (P < 0.05) in frozen-thawed semen samples as compared with fresh semen (60.1 ± 1.34 v. 81 ± 1.57, respectively). The plasma membrane integrity (%) and magnitude of osmotic stress in fresh and frozen-thawed semen samples was higher (P < 0.05) at 50, 100, 150 and 190 mOsm/l as compared with 250 mOsm/l. Loss of viability (%) in fresh and frozen-thawed semen samples was higher (P < 0.05) at 50 mOsm/l (59% in fresh, 70% frozen thawed) as compared with other osmotic pressures, while it was lowest at 250 mOsm/l (4.1% for fresh, 9.7% frozen thawed). In conclusion, osmotic pressure of Nili-Ravi buffalo semen and seminal plasma is determined. Furthermore, variation in osmotic pressure below 250 mOsm/l is not favorable to fresh and frozen-thawed buffalo spermatozoa.  相似文献   

11.
Ovine IVP embryos were derived from frozen-thawed unsorted and frozen-thawed sex-sorted spermatozoa that had been refrozen and thawed. The embryos were bisected and cultured in vitro, or transferred to recipient ewes to determine their survival in vitro and in vivo. Oocyte progression to the blastocyst stage was similar for unsorted (97/232, 41.8%) and sex-sorted spermatozoa (113/286, 39.5%; P > 0.05). Embryo survival in vitro post-bisection was similar for demi-embryos derived from unsorted and sex-sorted sperm, and embryos bisected at the blastocyst and expanded blastocyst stage (P > 0.05). A higher proportion of recipient ewes were pregnant at Day 63 after transfer of two intact embryos derived from unsorted (17/21, 80.9%) than two demi-embryos derived from unsorted (5/15, 33.3%) or sex-sorted spermatozoa (7/17, 41.2%). The number of fetuses per original embryo at Day 63 did not differ among groups (unsorted intact: 23/42, 54.8%; unsorted demi: 7/15, 46.7%; sex-sorted demi: 10/17, 58.8%) and twin pregnancies were observed in all groups. Embryo survival to term was high, and was not significantly different among intact (unsorted: 22/42, 52.4%) and demi-embryos (unsorted: 4/15, 26.7%; sex-sorted spermatozoa: 7/17, 41.2%; P > 0.05). Dizygotic twins (n = 6 sets) were born after the transfer of two intact embryos derived from unsorted spermatozoa, but only singleton lambs resulted from the transfer of demi-embryos. In conclusion, bisected IVP embryos successfully developed into morphologically normal lambs. However, embryo survival to term was neither increased nor decreased by embryo bisection.  相似文献   

12.
The objective was to introduce exogenous DNA into commercially sex-sorted bovine sperm using nanopolymer for transfection. In the first experiment, the optimal concentration and ratio of linear-to-circular plasmid was determined for NanoSMGT in unsorted sperm. A second experiment was conducted to transfect exogenous DNA into sex-sorted sperm. Exogenous DNA uptake occurred in a dose-dependent manner (P < 0.05). The optimal amount of DNA was 10 μg/106 cells. The ratios of linear-to-circular plasmid do not influence the uptake by unsorted sperm cells and none of the tested treatments affected sperm motility and viability. Commercially sex-sorted bovine sperm were able to uptake exogenous DNA using nanopolymer; however, both X- and Y-sorted sperm had decreased DNA uptake in comparison to unsorted sperm (P < 0.05). Neither sperm motility nor viability were affected by nanotransfection. In conclusion, nanopolymer efficiently introduced exogenous DNA into commercially sex-sorted bovine sperm; we inferred that these sperm could be used for production of embryos of the desired sex, a technique named NanoSMGT.  相似文献   

13.
The aim of this study was to evaluate embryo production in superovulated Holstein-Friesian dairy heifers and cows inseminated with either X-sorted spermatozoa (2 million/dose) or unsorted semen (15 million/dose). Experiment 1 at the research farm involved eight heifers, six cows and semen of one Holstein bull. All transferable embryos were diagnosed for sex. Experiment 2 included embryo collections on commercial dairy farms: X-sorted spermatozoa from three Holstein bulls were used for 59 collections on 28 farms and unsorted semen from 32 Holstein bulls were used for 179 collections on 79 farms. Superovulations were induced by eight declining doses of FSH (total of 12 ml for heifers and 19 ml for cows) starting on days 8-12 of the estrus cycle. Inseminations began 12h after the onset of estrus and were performed two to four times at 9-15 h intervals. Low-dose X-sorted inseminates were deposited into uterine horns and unsorted semen was placed into the uterine body. In Experiment 1, on average 70.3 and 75.0% of embryos recovered from heifers, and 48.4 and 100% of embryos recovered from cows were of transferable quality in X-sorted and unsorted groups, respectively. The proportion of transferable female embryos produced approximately doubled when insemination was with X-sorted spermatozoa compared to insemination with unsorted semen (heifers 96.4% versus 41.1%; cows 81.1% versus 39.8%). In Experiment 2, estimated 53.9 and 65.5% of embryos recovered from heifers, and 21.1 and 64.5% of embryos recovered from cows were of transferable quality in X-sorted and unsorted groups, respectively. Proportions of unfertilized oocytes were 21.1 and 10.6% for heifers and 56.0 and 14.4% for cows in X-sorted and unsorted groups, respectively. Consequently, cows inseminated with X-sorted spermatozoa produced significantly smaller proportions of transferable embryos (p<0.005) and significantly larger proportions of unfertilized oocytes (p<0.001) than those inseminated with unsorted semen. Proportions of quality 1 or degenerated embryos were similar for the two treatments in both heifers and cows. Within treatments, bulls did not significantly affect the proportions of transferable, unfertilized or degenerated oocytes/embryos. It was concluded that using low-dose X-sorted spermatozoa rather than normal-dose unsorted semen for the insemination of superovulated embryo donors can improve the proportion of transferable female embryos produced but this potential may not be achieved in commercial practice, particularly in cows, because of reduced fertilization rates when using low doses of X-sorted spermatozoa.  相似文献   

14.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

15.
The first successful artificial insemination (AI) in a rhinoceros was reported in 2007 using fresh semen. Following that success, we decided to evaluate the possibility of using frozen-thawed semen for artificial insemination. Semen, collected from a 35-36 year old Southern white rhinoceros (Ceratotherium simum simum) in the UK was frozen using the directional freezing technique. This frozen semen was used in two intrauterine AI attempts on a 30 years old female rhinoceros in Hungary. The first attempt, conducted 30 days postpartum with an insemination dose of ∼135 × 106 motile cells, failed. The second attempt, conducted two estrus cycles later with an insemination dose of ∼500 × 106 motile cells, resulted in pregnancy and the birth of a healthy offspring. This represents the first successful AI using frozen-thawed semen in a rhinoceros, putting it among very few wildlife species in which AI with frozen-thawed semen resulted in a live birth. The incorporation of AI with frozen-thawed semen into the assisted reproduction toolbox opens the way to preserve and transport semen between distant individuals in captivity or between wild and captive populations, without the need to transport stressed or potentially disease carrying animals. In addition, cryopreserved spermatozoa, in combination with AI, are useful methods to extend the reproductive lifespan of individuals beyond their biological lifespan and an important tool for managing genetic diversity in these endangered mammals.  相似文献   

16.
The first successful AI in an elephant was reported in 1998, using fresh semen. Since then almost 40 calves have been produced through AI in both Asian and African elephants worldwide. Following these successes, with the objective of enriching the captive population with genetic material from the wild, we evaluated the possibility of using frozen-thawed semen collected from wild bulls for AI in captivity. Semen, collected from a 36-yr-old wild African savanna elephant (Loxodonta africana) in South Africa was frozen using the directional freezing technique. This frozen-thawed semen was used for four inseminations over two consecutive days, two before and two after ovulation, in a 26-yr-old female African savanna elephant in Austria. Insemination dose of 1200 × 106 cells per AI with 61% motility resulted in pregnancy, which was confirmed through ultrasound examination 75, 110 and 141 days after the AI procedure. This represents the first successful AI using wild bull frozen-thawed semen in elephants. The incorporation of AI with frozen-thawed semen into the assisted reproduction toolbox opens the way to preserve and transport semen between distant individuals in captivity or, as was done in this study, between wild and captive populations, without the need to transport stressed or potentially disease-carrying animals or to remove animals from the wild. In addition, cryopreserved spermatozoa, in combination with AI, are useful methods to extend the reproductive lifespan of individuals beyond their biological lifespan and an important tool for genetic diversity management and phenotype selection in these endangered mammals.  相似文献   

17.
The aim of the present study was to evaluate the effect of artificial insemination time (before or after ovulation) using either fresh or frozen-thawed boar semen on embryo viability and early pregnancy rate. Seventy-seven prepubertal crossbred (Landrace x Large White x Duroc) gilts were inseminated in 4 treatments. Artificial inseminations were performed 6 h either after (A) or before (B) ovulation using frozenthawed (A-frozen, n = 19; B-frozen, n = 19) or fresh semen (A-fresh, n = 21; B-fresh, n = 18). The gilts were induced to puberty by administration of 400 IU of eCG and 200 IU hCG (sc) followed by 500 IU of hCG (sc) 72 h later. Ovulation was predicted to occur 42 h after the second injection. All animals were slaughtered 96 h after AI. Embryos were collected and classified as viable (5- to 8-cells, morulae, compacted morulae and early blastocysts) and nonviable (fragmented, degenerated and 1- to 4-cell embryos). The total embryo viability rate was: 64.3% (A-frozen), 54.2% (A-fresh), 76.0% (B-frozen), 91.9% (B-fresh); (A-fresh vs B-fresh, P = 0.018; A-frozen vs B-frozen, P = 0.094). It was observed that AI before ovulation resulted in a higher percentage of total viable embryos than AI after ovulation (P = 0.041). The early pregnancy rate, defined as presence of at least one viable embryo, was 78.9, 80.9, 84.2 and 94.4% for A-frozen, A-fresh, B-frozen, B-fresh, respectively. There was no significant difference in the early pregnancy rate among groups. In conclusion, there was a detrimental effect upon total embryo viability rate when AI was performed after ovulation with either frozen-thawed or fresh semen. The total embryo viability rate and the early pregancy rate were not affected by AI with either frozen-thawed or fresh semen regardless of the time of AI.  相似文献   

18.
Using sex-sorted semen to produce offspring of desired sex is associated with reduced developmental competence in vitro and lower fertility rates in vivo. The objectives of the present study were to investigate the effects of exogenous follistatin supplementation on the developmental competence of bovine embryos produced with sex-sorted semen and possible link between TGF-β regulated pathways and embryotrophic actions of follistatin. Effects of follistatin on expression of cell lineage markers (CDX2 and Nanog) and downstream targets of SMAD signaling (CTGF, ID1, ID2 and ID3) and AKT phosphorylation were investigated. Follistatin was supplemented during the initial 72?h of embryo culture. Exogenous follistatin restored the in vitro developmental competence of embryos produced with sex-sorted semen to the levels of control embryos produced with unsorted semen, and comparable results were obtained using sorted semen from three different bulls. The mRNA abundance for SMAD signaling downstream target genes, CTGF (SMAD 2/3 pathway) and ID2 (SMAD 1/5 pathway), was lower in blastocysts produced using sex-sorted versus unsorted semen, but mRNA levels for CDX2, NANOG, ID1 and ID3 were similar in both groups. Follistatin supplementation restored CTGF and ID2 mRNA in blastocysts produced using sex-sorted semen to levels of control embryos. Moreover, levels of phosphorylated (p)AKT (Ser-473 and Thr-308) were similar in embryos derived from sex-sorted and unsorted semen, but follistatin treatment increased pAKT levels in both groups. Taken together, results demonstrated that follistatin improves in vitro development of embryos produced with sex-sorted semen and such effects are associated with enhanced indices of SMAD signaling.  相似文献   

19.
The objective was to compare pregnancy rates in domestic cats using fresh semen for intravaginal artificial insemination (IVI), either at the time of hCG treatment for induction of ovulation, or 28 h later, and to compare pregnancy rates following IVI or transcervical intrauterine insemination (IUI) of frozen-thawed semen. Eighteen queens were inseminated during 39 estrus cycles. Fresh semen with 13.5+/-5.4 x 10(6) sperm (range, 6.8-22 x 10(6)) collected by electroejaculation from four male cats was used in Experiment 1, and cryopreserved semen (20 x 10(6) sperm, with 70+/-5% post-thaw motility) from one male cat was used in Experiment 2. Serum concentrations of estradiol-17beta and progesterone were determined in most queens on the day of AI and again 30-40 days later. Treatment with 100 IU of hCG 3 days after the onset of estrus induced ovulation in 95% of treated queens. Pregnancy rates to IVI with fresh semen at the time of hCG administration versus 28 h later were not different (P=0.58); overall 33% (5/15) of the queens became pregnant. For frozen-thawed semen, AI was consistently done 28h after hCG administration; IUI and IVI resulted in pregnancy rates of 41.7% (5/12), whereas no queen (0/12) became pregnant by IVI (P=0.0083). In conclusion, an acceptable pregnancy rate was obtained with frozen-thawed semen in the domestic cat by non-surgical transcervical IUI; this method might also be useful in other small felids.  相似文献   

20.
Field fertility with exported boar semen frozen in the new flatpack container   总被引:10,自引:0,他引:10  
The present study tested the field fertility of frozen-thawed (FT) Swedish boar semen packaged in flat plastic containers (FlatPacks) and exported for artificial insemination (AI) to overseas nucleus herds. Semen from 47 Swedish boars of Landrace (L), Yorkshire (Y), and Hampshire (H) breeds was frozen using a lactose-egg yolk-based extender with 3% glycerol and 10(9) spermatozoa/ml in 5 ml FlatPacks. For all breeds, FT sperm membrane intactness averaged 60%, while mean FT sperm motility ranged from 49 to 53%. A total of 308 litters resulted from 421 overseas inseminations with FT semen, with a mean farrowing rate (FR) of 73% and 10.7 mean number total piglets born. In a within-sow analysis for the purebred L and Y breedings, the FR and litter size of FT semen were compared with natural matings (NM) and on-farm AI with liquid semen (NW/AI breedings) at the same farms. Farrowing rate was 72.3 and 78.8% (P = 0.23), total piglets 11.3 and 11.6 (P = 0.44), and live piglets 10.1 and 10.2 (P = 0.77), for the FT semen and NM/AI breedings, respectively. The present results suggest that this freezing protocol and FlatPack container maintains high sperm viability post-thaw. Further the fertility levels when inseminated at overseas nucleus herds seem to be similar to those achieved with (NM/AI breedings) at the same farms. This freezing method may be a reliable alternative for the freezing/thawing of boar semen under commercial AI conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号