首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host-specific toxins: effectors of necrotrophic pathogenicity   总被引:3,自引:0,他引:3  
Host-specific toxins (HSTs) are defined as pathogen effectors that induce toxicity and promote disease only in the host species and only in genotypes of that host expressing a specific and often dominant susceptibility gene. They are a feature of a small but well-studied group of fungal plant pathogens. Classical HST pathogens include species of Cochliobolus , Alternaria and Pyrenophora . Recent studies have shown that Stagonospora nodorum produces at least four separate HSTs that interact with four of the many quantitative resistance loci found in the host, wheat. Rationalization of fungal phylogenetics has placed these pathogens in the Pleosporales order of the class Dothideomycetes. It is possible that all HST pathogens lie in this order. Strong evidence of the recent lateral gene transfer of the ToxA gene from S. nodorum to Pyrenophora tritici-repentis has been obtained. Hallmarks of lateral gene transfer are present for all the studied HST genes although definitive proof is lacking. We therefore suggest that the Pleosporales pathogens may have a conserved propensity to acquire HST genes by lateral transfer.  相似文献   

2.
Pathogenic fungi are the causal agents of many significant plant diseases around the world. These diseases often result in significant yield reductions, leading to lower food production rates and economic losses. Several of these pathogenic fungi also produce mycotoxins during infection, which are harmful to human and animal health. Whilst some of these toxins and the fungi that produce them have been studied intensively, the mycotoxigenic potential of many of these pathogens remains largely unknown. Included within these fungi are the necrotrophic pathogens of wheat, Stagonospora nodorum, Pyrenophora tritici-repentis and Alternaria alternata. Recent studies have demonstrated that each of these pathogens is capable of synthesizing an array of mycotoxic compounds during disease development, questioning their status as non-mycotoxin producers. This review summarises recent mycotoxin findings in these necrotrophic wheat pathogens by briefly discussing the mycotoxins identified, their toxicity and their synthesis. Future and emerging threats are also considered.  相似文献   

3.
Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G + C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.  相似文献   

4.
A number of bacterial strains were isolated from the internal tissue of Trapa japonica. Of these, strain KPE62302H, which had a 16S rDNA sequence identical to that of Streptomyces miharaensis showed antifungal activity against several plant pathogens. Treatment of seeds with strain KPE62302H induced a significant reduction in the incidence of Fusarium wilt in tomato plants compared with untreated controls. An antifungal substance (FP-1) was purified from the culture extract of strain KPE62302H using C18 flash and Sephadex LH-20 column chromatography and reverse phase HPLC. Extensive spectrometric analysis using MS and NMR identified this as filipin III. FP-1 inhibited the mycelial growth of plant pathogenic fungi such as Alternaria mali, Aspergillus niger, Colletotrichum gloeosporioides, C. orbiculare, Cylindrocarpon destructans, Diaporthe citiri, Fusarium oxysporum at 1-10 μg ml(-1) and also markedly inhibited the development of Fusarium wilt caused by F. oxysporum f.sp. lycopersici in tomato plants by treatment with 10 μg ml(-1) under greenhouse conditions. The efficacy of FP-1 against Fusarium wilt was comparable to that of the synthetic fungicide benomyl. An egfp -tagged strain of KPE62302H confirmed its ability to colonize tomato plants.  相似文献   

5.
红树林内生真菌研究进展   总被引:8,自引:0,他引:8  
红树林作为一种特殊的植物群落具有丰富的内生真菌资源,目前已分离鉴定的红树林真菌超过200种,成为海洋真菌的第二大类群,已报道的红树林内生真菌主要类群是链格孢霉(Alternaria)、曲霉(Aspergillus)、芽枝霉(Cladosporium)、炭疽菌(Colletotrichum)、镰孢霉(Fusarium)、拟青霉(Paecilomyces)、拟盘多毛孢(Pestalotiopsis)、青霉(Penicillium)、茎点霉(Phoma)、拟茎点霉(Phomopsis)、叶点霉(Phyllosticta)和木霉(Trichoderma)等.大部分红树林内生真菌具有较宽的宿主范围,极少数只有单一的宿主,不同红树林植物的内生真菌区系及优势种群有很大差异.红树林内生真菌的定殖因宿主植物不同部位、植株的年龄及季节和环境的变化明显不同.红树林内生真菌能产生多种代谢产物,具有抗菌、抗肿瘤等药用价值.红树林植物内生真菌的研究和开发具有重要意义.本文综述了红树林内生真菌的生物多样性及其分布、生物学功能和次生代谢产物等方面的研究进展.  相似文献   

6.
Fusarium oxysporum is an asexual fungus that inhabits soils throughout the world. As a species, F. oxysporum can infect a very broad range of plants and cause wilt or root rot disease. Single isolates of F. oxysporum, however, usually infect one or a few plant species only. They have therefore been grouped into formae speciales (f.sp.) based on host specificity. Isolates able to cause tomato wilt (f.sp. lycopersici) do not have a single common ancestor within the F. oxysporum species complex. Here we show that, despite their polyphyletic origin, isolates belonging to f.sp. lycopersici all contain an identical genomic region of at least 8 kb that is absent in other formae speciales and non-pathogenic isolates, and comprises the genes SIX1, SIX2 and SHH1. In addition, SIX3, which lies elsewhere on the same chromosome, is also unique for f.sp. lycopersici. SIX1 encodes a virulence factor towards tomato, and the Six1, Six2 and Six3 proteins are secreted in xylem during colonization of tomato plants. We speculate that these genes may be part of a larger, dispensable region of the genome that confers the ability to cause tomato wilt and has spread among clonal lines of F. oxysporum through horizontal gene transfer. Our findings also have practical implications for the detection and identification of f.sp. lycopersici.  相似文献   

7.
The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5-2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome - with mean diversity (θ(π)) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.  相似文献   

8.
A study was conducted for isolation, identification and antibacterial potential of fungal endophytes of Adenocalymma alliaceum Miers., (Bignoniaceae), a medicinal shrub vine plant which has long history for its usages in curing various disorders. A total of 149 isolates of endophytic fungi representing 17 fungal taxa were obtained from 270 segments (90 from each stem, leaf and petiole) of this plant. Hyphomycetes (77.85%) were the most prevalent, followed by Ascomycetes (8.05%) and Coelomycetes (4.03%) respectively. A considerable amount of fungal isolates was kept under (10.07%) Mycelia-Sterilia (MS). Leaf harboured maximum colonization of endophytic fungi (72.22%) which was greater than stem (67.78%) and petiole (25.54%). The Jc similarity index was maximum (0.619) between stem vs leaf followed by leaf vs petiole (0.571) and stem vs petiole (0.428). The dominant endophytic fungi were Alternaria alternata, Aspergillus niger, Stenella agalis, Fusarium oxysporum, Curvularia lunata and Fusarium roseum. Among twelve endophytic fungi tested for antibacterial activity, crude extracts of nine endophytic fungi (75%), showed antibacterial potential against one or more clinical human pathogens. Alternaria alternata, Curvularia lunata, Penicillium sp. and Chaetomium globosum exhibited significant antibacterial activity against 4 of 5 tested pathogens, showing broad spectrum activity. This investigation explains the value of sampling from different tissues of a host plant for the greater species diversity, and additionally, the antibacterial screening of some endophytic fungi from this specific medicinal plant may represent a unique source for many of the useful antibacterial compounds.  相似文献   

9.
Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.  相似文献   

10.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

11.
Kikuchi T  Jones JT  Aikawa T  Kosaka H  Ogura N 《FEBS letters》2004,572(1-3):201-205
We have characterized a family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. The absence of such genes from other nematodes and their similarity to fungal genes suggests that they may have been acquired by horizontal gene transfer (HGT) from fungi. The cell wall degrading enzymes of other plant parasitic nematodes may have been acquired by HGT from bacteria. B. xylophilus is not directly related to other plant parasites and our data therefore suggest that horizontal transfer of cell wall degrading enzymes has played a key role in evolution of plant parasitism by nematodes on more than one occasion.  相似文献   

12.
Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) causes severe root rot and wilt in several cucurbit species, including cucumber, melon, and watermelon. Previously, a pathogenicity chromosome, chrRC, was identified in Forc. Strains that were previously nonpathogenic could infect multiple cucurbit species after obtaining this chromosome via horizontal chromosome transfer (HCT). In contrast, F. oxysporum f. sp. melonis (Fom) can only cause disease on melon plants, even though Fom contains contigs that are largely syntenic with chrRC. The aim of this study was to identify the genetic basis underlying the difference in host range between Fom and Forc. First, colonization of different cucurbit species between Forc and Fom strains showed that although Fom did not reach the upper part of cucumber or watermelon plants, it did enter the root xylem. Second, to select candidate genomic regions associated with differences in host range, high-quality genome assemblies of Fom001, Fom005, and Forc016 were compared. One of the Fom contigs that is largely syntenic and highly similar in sequence to chrRC contains the effector gene SIX6. After HCT of the SIX6-containing chromosome from Fom strains to a nonpathogenic strain, the recipient (HCT) strains caused disease on melon plants, but not on cucumber or watermelon plants. These results provide strong evidence that the differences in host range between Fom and Forc are caused by differences between transferred chromosomes of Fom and chrRC, thus narrowing down the search for genes allowing or preventing infection of cucumber and watermelon to genes located on these chromosomes.  相似文献   

13.
应用两对引物,从对多菌灵具有耐药性的链格孢属3个真菌中扩增了与多菌灵耐药性相关的β-微管蛋白基因,基因长度分别为1,419bp(瓜链格孢),1,426bp(茄链格孢),1,419bp(链格孢),均包含3个内含子,编码398个氨基酸。3个链格孢属真菌与其他对多菌灵敏感的植物病原真菌β-微管蛋白氨基酸具有高度的同源性。但是,3个真菌167位氨基酸均为酪氨酸,而其他对多菌灵敏感的真菌167位均为苯丙氨酸,研究结果表明链格孢属真菌对多菌灵的耐药性可能与167位酪氨酸有关。  相似文献   

14.
从80株乳酸菌中筛选出45株具有抗灰葡萄孢霉菌活性的乳酸菌菌株,其中10株具有较强抗灰葡萄孢霉菌活性。对这10株乳酸菌菌株的抗植物致病真菌谱进行了研究,这10株乳酸菌对番茄早疫病菌,甜瓜疫霉菌,甜瓜枯萎病菌,苹果炭疽病菌的生长均有较强的抑制作用。其中1株具有广谱抗植物致病真菌活性的乳酸菌菌株BX6-4为植物乳杆菌。经番茄离体叶片接种试验发现,植物乳杆菌BX6-4的发酵液能够在体外强烈地抑制灰葡萄孢霉菌的生长。  相似文献   

15.
16.
Selective pressure induces pathogens to change their method of infection and, sometimes, causes species to become infectious. Pathogenic fungi must differentiate different morphological and physiological properties during the process of host specialization in their life cycle. In the present study, we conducted a genetic investigation and compared similarities within a generation of Fusarium oxysporum forma speciales (f. sp.) infecting tomato and forma (f.) infecting eggplants using selected ISSR and RAPD markers, two horticultural commodities belonging to the same taxon of the Solanaceae. Interestingly, genetic data showed that fungi belonging to F. oxysporum f. sp. infecting tomato have a close genetic relationship with the fungi f. infecting eggplant. Furthermore, F. oxysporum f. sp. infecting tomato showed less genetic variation than F. oxysporum f. melongenae, suggesting that it could be developed more recently during host adaptation. On the other hand, the gene sequence of inter-simple sequence repeat (ISSR) markers resulting in high polymorphism showed matches with gene sequences encoding specific proteins related to pathogenicity of F. oxysporum species. These findings support the notion that selected ISSR markers can be used to follow host-associated divergence of F. oxysporum species infecting tomato and eggplant and that differentiation of their specific genes can also be related to pathogenicity and development as predictive studies before initiating detailed sequencing analysis.  相似文献   

17.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.  相似文献   

18.
19.
The hitherto unknown relationships between the European orchid Spiranthes spiralis (L.) Chevall and its internally associated fungi were explored by a combined approach involving microscopy-based investigations at a morpho-histological level as well as by molecular analyses of the identity of the eukaryotic endophytes present in the root tissue of the plant. We found that this orchid which is currently reported to have a vulnerable status in northern Italy, can host and interact with at least nine types of fungi. Some of these fungi show similarity to mycorrhizal genera found in orchids such as the Ceratobasidium-Rhizoctonia group. Other fungi found are from the genera Davidiella (Ascomycota), Leptosphaeria (Ascomycota), Alternaria (Ascomycota), and Malassezia (Basidiomycota), some of which until have not previously been reported to have an endophytic relationship with plants. The repeated occurrence of often pathogenic fungi such as Fusarium oxysporum, Bionectria ochroleuca, and Alternaria sp., within healthy specimens of this orchid suggests a tempered interaction with species that are sometimes deleterious to non-orchid plants. The fact is reminiscent of the symbiotic compromise established by orchids with fungi of the rhizoctonia group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号