首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

2.
During the assembly of human immunodeficiency virus type 1 (HIV-1) particles, the tetraspanin CD63 can be incorporated into the viral membrane. Indeed, cell surface tetraspanin microdomains that include CD63 have been proposed as sites for virus release. In addition, antibodies against CD63 can inhibit HIV infection of macrophages. In this cell type, HIV assembles into intracellularly sequestered plasma membrane domains that contain several other tetraspanins, including CD81, CD9, and CD53. CD63 is recruited to this domain following HIV infection. Together, these observations suggest that CD63 may have some function in the assembly of infectious virus particles and/or the infectivity of assembled virions. Here we have used RNA interference to knock down CD63 expression in monocyte-derived primary macrophages. We show that in the absence of CD63, HIV assembly is quantitatively comparable to that seen in CD63-expressing macrophages and that virus assembly occurs on compartments positive for CD81, CD9, and CD53. Moreover, the infectivity of macrophage-derived virus is unaffected by the loss of CD63. Together, our results indicate that at least in tissue culture, CD63 expression is not required for either the production or the infectivity of HIV-1.  相似文献   

3.
In macrophages, HIV-1 has been shown to bud into intracellular structures that contain the late endosome marker CD63. We show that these organelles are not endosomes, but an internally sequestered plasma membrane domain. Using immunofluorescence microscopy and immunoelectron microscopy, we find that HIV-1 buds into a compartment that contains the tetraspanins CD81, CD9, and CD53. On uninfected macrophages, these proteins are seen at the cell surface and in intracellular vacuole-like structures with a complex content of vesicles and interconnected membranes that lack endosome markers, including CD63. Significantly, these structures are accessible to small tracers (horseradish peroxidase or ruthenium red) applied to cells at 4 degrees C, indicating that they are connected to the cell surface. HIV assembles on, and accumulates within, these intracellular compartments. Furthermore, CD63 is recruited to the virus-containing structures and incorporated into virions. These results indicate that, in macrophages, HIV-1 exploits a previously undescribed intracellular plasma membrane domain to assemble infectious particles.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infects CD4(+) T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages.  相似文献   

5.
Macrophages are long-lived target cells for HIV infection and are considered viral reservoirs. HIV assembly in macrophages occurs in virus-containing compartments (VCCs) in which virions accumulate and are stored. The regulation of the trafficking and release of these VCCs remains unknown. Using high resolution light and electron microscopy of HIV-1–infected primary human macrophages, we show that the spatial distribution of VCCs depended on the microtubule network and that VCC-limiting membrane was closely associated with KIF3A+ microtubules. Silencing KIF3A strongly decreased virus release from HIV-1–infected macrophages, leading to VCC accumulation intracellularly. Time-lapse microscopy further suggested that VCCs and associated KIF3A move together along microtubules. Importantly, KIF3A does not play a role in HIV release from T cells that do not possess VCCs. These results reveal that HIV-1 requires the molecular motor KIF3 to complete its cycle in primary macrophages. Targeting this step may lead to novel strategies to eliminate this viral reservoir.  相似文献   

6.
Two primary cell targets for human immunodeficiency virus type 1 (HIV-1) infection in vivo are CD4+ T lymphocytes and monocyte-derived macrophages (MDM). HIV-1 encodes envelope glycoproteins which mediate virus entry into these cells. We have utilized infected and radiolabelled primary peripheral blood mononuclear cell (PBMC) and MDM cultures to examine the biochemical and antigenic properties of the HIV-1 envelope produced in these two cell types. The gp120 produced in MDM migrates as a broad, diffuse band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels compared with that of the more homogeneous gp120 released from PBMCs. Glycosidase analyses indicated that the diffuse appearance of the MDM gp120 is due to the presence of asparagine-linked carbohydrates containing lactosaminoglycans, a modification not observed with the gp120 produced in PBMCs. Neutralization experiments, using isogeneic PBMC and MDM-derived macrophage-tropic HIV-1 isolates, indicate that 8- to 10-fold more neutralizing antibody, directed against the viral envelope, is required to block virus produced from MDM. These results demonstrate that HIV-1 released from infected PBMC and MDM cultures differs in its biochemical and antigenic properties.  相似文献   

7.
Viruses have evolved various strategies in order to persist within the host. To date, most information on mechanisms of HIV-1 persistence has been derived from studies with lymphocytes, but there is little information regarding mechanisms that govern HIV-1 persistence in macrophages. It has previously been demonstrated that virus assembly in macrophages occurs in cytoplasmic vesicles, which exhibit the characteristics of multivesicular bodies or late endosomes. The infectious stability of virions that assemble intracellularly in macrophages has not been evaluated. We demonstrate that virions assembling intracellularly in primary macrophages retain infectivity for extended intervals. Infectious virus was recovered directly from cytoplasmic lysates of macrophages and could be transmitted from macrophages to peripheral blood lymphocytes in trans 6 weeks after ongoing viral replication was blocked. Cell-associated virus decayed significantly from 1 to 2 weeks post infection, but decreased minimally thereafter. The persistence of intracellular virions did not require the viral accessory proteins Vpu or Nef. The stable sequestration of infectious virions within cytoplasmic compartments of macrophages may represent an additional mechanism for viral persistence in HIV-1-infected individuals.  相似文献   

8.
9.
Human immunodeficiency virus (HIV) replication in the major natural target cells, CD4+ T lymphocytes and macrophages, is parallel in many aspects of the virus life cycle. However, it differs as to viral assembly and budding, which take place on plasma membranes in T cells and on endosomal membranes in macrophages. It has been postulated that cell type-specific host factors may aid in directing viral assembly to distinct destinations. In this study we defined annexin 2 (Anx2) as a novel HIV Gag binding partner in macrophages. Anx2-Gag binding was confined to productively infected macrophages and was not detected in quiescently infected monocyte-derived macrophages (MDM) in which an HIV replication block was mapped to the late stages of the viral life cycle (A. V. Albright, R. M. Vos, and F. Gonzalez-Scarano, Virology 325:328-339, 2004). We demonstrate that the Anx2-Gag interaction likely occurs at the limiting membranes of late endosomes/multivesicular bodies and that Anx2 depletion is associated with a significant decline in the infectivity of released virions; this coincided with incomplete Gag processing and inefficient incorporation of CD63. Cumulatively, our data suggest that Anx2 is essential for the proper assembly of HIV in MDM.  相似文献   

10.
K N Fish  W Britt    J A Nelson 《Journal of virology》1996,70(3):1855-1862
Human cytomegalovirus (HCMV) infection of monocyte-derived macrophages (MDM) results in delayed and nonlytic productive viral growth. During late stages of replication, infectious virus remains cell associated in cytoplasmic vacuoles. In order to understand HCMV survival and persistence in MDM, we examined mechanisms involved in the formation and trafficking of HCMV-containing vacuoles in these cells. Utilizing double-label immunofluorescence with antibodies to viral and cellular proteins, HCMV-containing vacuoles were associated with the Golgi apparatus marker mannosidase II but not with markers to early endosomes (transferrin receptor and rab5) or late endosomes and early lysosomes (LAMP-1 and -2). In addition, as late-stage viral infection progressed in MDM, the cells displayed increasing abnormalities in the Golgi apparatus. Analysis of structural features of infected cells revealed the disruption of the microtubule network. These observations suggest a novel mechanism by which HCMV is vacuolized in MDM, avoiding degradation and release from the cell.  相似文献   

11.
Human immunodeficiency virus type-1 (HIV-1) egress from infected CD4+ T cells is thought to be via assembly and budding at the plasma membrane and may involve components of the T-cell secretory apparatus, including tetraspanins. However, many studies on HIV-1 assembly have examined the trafficking of viral proteins in isolation, and most have used immortalized epithelial, fibroblastic, or hematopoietic cell lines that may not necessarily reflect natural infection of susceptible T cells. Here we have used immunofluorescence and cryoimmunoelectron microscopy (CEM) to examine protein transport during HIV-1 assembly in productively infected Jurkat CD4+ T cells and primary CD4+ T cells. The HIV-1 envelope glycoprotein (Env) and the core protein (Gag) colocalize strongly with CD63 and CD81 and less strongly with CD9, whereas no colocalization was seen between Env or Gag and the late endosome/lysosomal marker Lamp2. CEM revealed incorporation of CD63 and CD81 but not Lamp2 into virions budding at the plasma membrane, and this was supported by immunoprecipitation studies, confirming that HIV-1 egress in T cells is trafficked via tetraspanin-enriched membrane domains (TEMs) that are distinct from lysosomal compartments. CD63, CD81, and, to a lesser extent, CD9 were recruited to the virological synapse (VS), and antibodies against these tetraspanins reduced VS formation. We propose that HIV-1 promotes virus assembly and cell-cell transfer in T cells by targeting plasma membrane TEMs.  相似文献   

12.
Human macrophages accumulate HIV-1 particles in MHC II compartments   总被引:10,自引:2,他引:8  
Macrophages are important targets for HIV-1 infection and harbor the virions in an as yet unidentified organelle. To determine the location of HIV-1 in these cells, an extensive analysis of primary human macrophages infected in vitro with HIV-1 was carried out by immuno-electron microscopy. Virus particles were found to accumulate in intracellular multivesicular compartments which were enriched in major histocompatibility complex class II molecules and CD63. These features are characteristics of major histocompatibility complex class II compartments where maturing class II molecules acquire their peptide cargo. The membrane-delimited, electron-dense virus particles of 100–110 nm diameter labeled strongly for HIV-1 p24 antigen, major histocompatibility complex class II molecules, CD63 and, to a lesser extent for HIV-1 gp120 envelope protein and Lamp 1. Our data suggest that virus particles may access the lumen of the major histocompatibility complex class II compartment by budding from the limiting membrane, thus acquiring proteins of this membrane such as class II and CD63. Viral assembly and budding would therefore occur in macrophages by a process similar to the formation of the internal vesicles in multivesicular bodies and at the same location. This could account for the particular content in lipids and proteins previously found in the membrane wrapping HIV particles. Our observations also suggest direct fusion of the virus containing major histocompatibility complex class II compartment with the plasma membrane, leading to massive release of viral particles into the extracellular medium.  相似文献   

13.
Antigens derived from host cells are detectable in the envelope of human immunodeficiency virus type 1 (HIV-1) and result in a distinctive viral phenotype reflecting that of the host cell. An immunomagnetic capture assay targeting discriminatory host proteins was developed to differentiate between HIV-1 derived from macrophages and lymphocytes. HIV-1 propagated in macrophages or lymphocytes in vitro was selectively captured by monoclonal antibodies directed against the virally incorporated cell-type-specific host markers CD36 (macrophages) and CD26 (lymphocytes). Furthermore, by targeting these markers, virus of defined cellular origin was selectively captured from a mixed pool of in vitro-propagated viruses. This technique was further refined in order to determine the impact of opportunistic infection on HIV-1 expression from these cellular compartments in vivo. Analysis of cell-free virus purified from plasma of patients with HIV-1 infection suggested that in those with an opportunistic infection, viral replication occurred in activated lymphocytes. Interestingly, there was also significant replication in activated macrophages in those patients with untreated pulmonary tuberculosis. Thus, in addition to lymphocytes, the macrophage cellular pool may serve as an important source of cell-free HIV-1 in patients with opportunistic infections that lead to marked macrophage activation. This novel viral capture technique may allow researchers to address a wide range of important questions regarding virus-host dynamics.  相似文献   

14.
The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.  相似文献   

15.
The vif gene of human immunodeficiency virus type 1 (HIV-1) is required for efficient infection of primary T lymphocytes. In this study, we investigated in detail the role of vif in productive infection of primary monocyte-derived macrophages (MDM). Viruses carrying missense or deletion mutations in vif were constructed on the background of the monocytotropic recombinant NLHXADA-GP. Using MDM from multiple donors, we found that vif mutants produced in complementing or partially complementing cell lines were approximately 10% as infectious as wild-type virus when assayed for incomplete, complete, and circularized viral DNA molecules by quantitative PCR amplification or for viral core antigen p24 production by enzyme-linked immunosorbent assay. We then determined the structure and infectivity of vif mutant HIV-1 by using MDM exclusively both for virus production and as targets for infection. Biosynthetic labeling and immunoprecipitation analysis of sucrose cushion-purified vif-negative HIV-1 made in MDM revealed that the virus had reduced p24 content compared with wild-type HIV-1. Cell-free MDM-derived vif mutant HIV-1 was infectious in macrophages as determined by the synthesis and maintenance of full-length viral DNA and by the produc- tion of particle-associated viral RNA, but its infectivity was approximately 2,500-fold lower than that of wild-type virus whose titer was determined in parallel by measurement of the viral DNA burden. MDM infected with MDM-derived vif-negative HIV-1 were able to transmit the virus to uninfected MDM by cocultivation, confirming the infectiousness of this virus. We conclude that mutations in vif significantly reduce but do not eliminate the capacity of HIV-1 to replicate and produce infectious progeny virus in primary human macrophages.  相似文献   

16.
Although brain tissue from patients with human immunodeficiency virus (HIV) and/or AIDS is consistently infected by HIV type 1 (HIV-1), only 20 to 30% of patients exhibit clinical or neuropathological evidence of brain injury. Extensive HIV-1 sequence diversity is present in the brain, which may account in part for the variability in the occurrence of HIV-induced brain disease. Neurological injury caused by HIV-1 is mediated directly by neurotoxic viral proteins or indirectly through excess production of host molecules by infected or activated glial cells. To elucidate the relationship between HIV-1 infection and neuronal death, we examined the neurotoxic effects of supernatants from human 293T cells or macrophages expressing recombinant HIV-1 virions or gp120 proteins containing the V1V3 or C2V3 envelope region from non-clade B, brain-derived HIV-1 sequences. Neurotoxicity was measured separately as apoptosis or total neuronal death, with apoptosis representing 30 to 80% of the total neuron death observed, depending on the individual virus. In addition, neurotoxicity was dependent on expression of HIV-1 gp120 and could be blocked by anti-gp120 antibodies, as well as by antibodies to the human CCR5 and CXCR4 chemokine receptors. Despite extensive sequence diversity in the recombinant envelope region (V1V3 or C2V3), there was limited variation in the neurotoxicity induced by supernatants from transfected 293T cells. Conversely, supernatants from infected macrophages caused a broader range of neurotoxicity levels that depended on each virus and was independent of the replicative ability of the virus. These findings underscore the importance of HIV-1 envelope protein expression in neurotoxic pathways associated with HIV-induced brain disease and highlight the envelope as a target for neuroprotective therapeutic interventions.  相似文献   

17.
Analysis of viral replication and pathogenicity after in vivo selection of human immunodeficiency virus type 1 (HIV-1) attenuated in vitro will help to define the functions involved in replication and pathogenesis in vivo. Using the SCID-hu Thy/Liv mouse and human fetal thymus organ culture as in vivo models, we previously defined HIV-1 env determinants (HXB2/LW) which were reverted for replication in vivo (L. Su et al., Virology 227:46-52, 1997). In this study, we examined the replication of four highly related HIV-1 clones directly derived from Lai/IIIB or after selection in vivo to investigate the envelope gp120 determinants associated with replication in macrophages and in the thymus models in vivo. The LW/C clone derived from the IIIB-infected laboratory worker and HXB2/LW both efficiently infected monocyte-derived macrophages (MDM) and the human thymus. Although the laboratory worker (LW) isolates showed altered tropism from IIIB, they still predominantly used CXCR4 as coreceptors for infecting peripheral blood mononuclear cells, macrophages, and the thymus. Interestingly, a single amino acid mutation in the V3 loop associated with resistance to neutralizing antibodies was also essential for the replication activity of the LW virus in the thymus models but not for its activity in infecting MDM. The LW virions were equally sensitive to a CXCR4 antagonist. We further demonstrated that the LW HIV-1 isolate selected in vivo produced more infectious viral particles that contained higher levels of the Env protein gp120. Thus, selection of the laboratory-attenuated Lai/IIIB isolate in vivo leads to altered tropism but not coreceptor usage of the virus. The acquired replication activity in vivo is correlated with an early A-to-T mutation in the V3 loop and increased virion association of HIV-1 Env gp120, but it is genetically separable from the acquired replication activity in macrophages.  相似文献   

18.
Studies conducted in cell lines indicate that cyclophilin A (CypA) is a component of HIV type 1 (HIV-1) virions, and that when CypA incorporation into virions is inhibited by treatment of infected cells with the immunosuppressive agent cyclosporin A (CsA), HIV-1 infection also is inhibited. Because HIV-1 particles assemble along a different pathway and incorporate different host proteins in macrophages than in other cell types, we investigated CypA and CsA activities in HIV-1-infected primary human macrophages, compared with primary human lymphocytes. We tested virus protein production, virion composition and infectivity, and progress through the virus life cycle under perturbation by drug treatment or mutagenesis in infected cells from multiple donors. Our findings from both primary cell types are different from that previously reported in transformed cells and show that the amount of CypA incorporated into virions is variable and that CsA inhibits HIV-1 infection at both early and late phases of virus replication, the stage affected is determined by the sequence of HIV-1 Gag. Because the cell type infected determines the identity of host proteins active in HIV-1 replication and can influence the activity of some viral inhibitors, infection of transformed cells may not recapitulate infection of the native targets of HIV-1.  相似文献   

19.
20.
Dendritic cells (DCs) are essential components of the early events of HIV infection. Here, we characterized the trafficking pathways that HIV-1 follows during its capture by DCs and its subsequent presentation to CD4(+) T cells via an infectious synapse. Immunofluorescence microscopy indicates that the virus-containing compartment in mature DCs (mDCs) co-labels for the tetraspanins CD81, CD82, and CD9 but contains little CD63 or LAMP-1. Using ratio imaging of pH-reporting fluorescent virions in live DCs, we show that HIV-1 is internalized in an intracellular endocytic compartment with a pH of 6.2. Significantly, we demonstrate that the infectivity of cell-free virus is more stable at mildly acidic pH than at neutral pH. Using electron microscopy, we confirm that HIV-1 accumulates in intracellular vacuoles that contain CD81 positive internal membranes but overlaps only partially with CD63. When allowed to contact T cells, HIV-1-loaded DCs redistribute CD81, and CD9, as well as internalized HIV-1, but not the immunological synapse markers MHC-II and T-cell receptor to the infectious synapse. Together, our results indicate that HIV-1 is internalized into a non-conventional, non-lysosomal, endocytic compartment in mDCs and further suggest that HIV-1 is able to selectively subvert components of the intracellular trafficking machinery required for formation of the DC-T-cell immunological synapse to facilitate its own cell-to-cell transfer and propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号