首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sensory rhodopsin I (SR-I) is a retinal-containing pigment which functions as a phototaxis receptor in Halobacterium halobium. We have obtained resonance Raman vibrational spectra of the native membrane-bound form of SR587 and used these data to determine the structure of its retinal prosthetic group. The similar frequencies and intensities of the skeletal fingerprint modes in SR587, bacteriorhodopsin (BR568), and halorhodopsin (HR578) as well as the position of the dideuterio rocking mode when SR-I is regenerated with 12,14-D2 retinal (915 cm-1) demonstrate that the retinal chromophore has an all-trans configuration. The shift of the C = N stretching mode from 1628 cm-1 in H2O to 1620 cm-1 in D2O demonstrates that the chromophore in SR587 is bound to the protein by a protonated Schiff base linkage. The small shift of the 1195 cm-1 C14-C15 stretching mode in D2O establishes that the protonated Schiff base bond has an anti configuration. The low value of the Schiff base stretching frequency together with its small 8 cm-1 shift in D2O indicates that the Schiff base proton is weakly hydrogen bonded to its protein counterion. This suggests that the red shift in the absorption maximum of SR-I (587 nm) compared with HR (578 nm) and BR (568 nm) is due to a reduction of the electrostatic interaction between the protonated Schiff base group and its protein counterion.  相似文献   

2.
The circular dichroism spectra of the three forms of lipoxygenase-1 from soybeans show characteristic differences in the region between 300 and 600 nm. Native lipoxygenase-1 only shows a negative dichroic band around 330 nm. Yellow lipoxygenase-1, obtained by addition of an equimolar amount of 13-F-hydroperoxylinoleic acid to the native enzyme, shows a positive Cotton effect at 425 nm, while the negative band band at 330 nm has increased in intensity. The blue enzyme, representing a complex of yellow enzyme with 13-L-hydroperoxylinoleic acid exhibits a negative dichroic band at 580 nm and positive bands at 410 and 391 nm. The near-ultraviolet CD spectra of the three forms of lipoxygenase are very similar, showing several well resolved positive dichroic bands at 0 degrees C. Using the method of Chen et al. (Chen, Y.-H., Yang, J.T. and Martinez, H.M. (1972) Biochemistry 11, 4120--4131) the contents of alpha-helix, beta- and unordered form of native lipoxygenase-1 were estimated to be 34, 27 and 39% respectively.  相似文献   

3.
An analogue of all-trans retinal in which all-trans/13-cis isomerization is blocked by a carbon bridge from C12 to C14 was incorporated into the apoproteins of sensory rhodopsin I (SR-I) and sensory rhodopsin II (SR-II, also called phoborhodopsin) in retinal-deficient Halobacterium halobium membranes. The "all-trans-locked" retinal analogue forms SR-I and SR-II analogue pigments with similar absorption spectra as the native pigments. Blocking isomerization prevents the formation of the long-lived intermediate of the SR-I photocycle (S373) and those of the SR-II photocycle (S-II360 and S-II530). A computerized cell tracking and motion analysis system capable of detecting 2% of native pigment activity was used for assessing motility behavior. Introduction of the locked analogue into SR-I or SR-II apoprotein in vivo did not restore phototactic responses through any of the three known photosensory systems (SR-I attractant, SR-I repellent, or SR-II repellent). We conclude that unlike the phototaxis receptor of Chlamydomonas reinhardtii, which has been reported to mediate physiological responses without specific double-bond isomerization of its retinal chromophore (Foster et al., 1989), all-trans/13-cis isomerization is essential for SR-I and SR-II phototaxis signaling.  相似文献   

4.
Circular dichroic (CD) spectra of soybean leghemoglobin, and some of its liganded derivatives were measured over the wavelength range of 650 to 200 nm. The heme-related circular dichroic bands in the visible, Soret and ultraviolet wavelength regions exhibit Cotton effects characteristic of each of the compounds examined. The positions of the dichroic bands vary with ligand substitutions and the oxidation state of the iron. All leghemoglobin derivatives, except the apoprotein, exhibit negative circular dichroic bands in the region of Soret absorption. In this region the optical activity of compounds with high-spin moments is greater than that of compounds with low or intermediate spin moments. The ellipticity of the heme band at about 260 nm is also altered by ligand binding and spin state. The dichroic spectra in the far-ultraviolet region indicated a high extent of alpha-helical structure (about 70%) in the native leghemoglobin and its liganded derivatives. The helicality of the apoprotein seems to diminish suggesting a decrease caused by the removal of the heme.  相似文献   

5.
The visible chromophore of bacteriorhodopsin, BR(570), undergoes progressive bleaching when subjected to 60CO gamma-irradiation. The low G-value for bleaching confirms that the site of the chromophore is highly protected. Positive and negative circular dichroic (CD) bands associated with the chromosphone undergo concomitant decrease in a manner which is consistent with two independent chromophores rather than exciton coupling between neighbouring chromophoric site.  相似文献   

6.
Sensory rhodopsin I (SR-I lambda(max) 587 nm) is a phototaxis receptor in the archaeon Halobacterium salinarium. Photoisomerization of retinal in SR-I generates a long-lived intermediate with lambda(max) 373 nm which transmits a signal to the membrane-bound transducer protein HtrI. Although SR-I is structurally similar to the electrogenic proton pump bacteriorhodopsin (BR), early studies showed its photoreactions do not pump protons, nor result in membrane hyperpolarization. These studies used functionally active SR-I, that is, SR-I complexed with its transducer HtrI. Using recombinant DNA methods we have expressed SR-I protein containing mutations in ionizable residues near the protonated Schiff base, and studied wild-type and site-specifically mutated SR-I in the presence and absence of the transducer protein. UV-Vis kinetic absorption spectroscopy, FT-IR, and pH and membrane potential probes reveal transducer-free SR-I photoreactions result in vectorial proton translocation across the membrane in the same direction as that of BR. This proton pumping is suppressed by interaction with transducer which diverts the proton movements into an electroneutral path. A key step in this diversion is that transducer interaction raises the pK(a) of the aspartyl residue in SR-I (Asp76) which corresponds to the primary proton-accepting residue in the BR pump (Asp85). In transducer-free SR-I, our evidence indicates the pK(a) of Asp76 is 7.2, and ionized Asp76 functions as the Schiff base proton acceptor in the SR-I pump. In the SR-I/HtrI complex, the pK(a) of Asp76 is 8.5, and therefore at physiological pH (7.4) Asp76 is neutral. Protonation changes on Asp76 are clearly not required for signaling since the SR-I mutants D76N and D76A are active in phototaxis. The latent proton-translocation potential of SR-I may reflect the evolution of the SR-I sensory signaling mechanism from the proton pumping mechanism of BR.  相似文献   

7.
Circular dichroism (CD) spectra of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus exhibit three positive ellipticity bands between 240 and 300 nm (250, 283, and 292 nm), two negative bands at 327 and 480 nm, and a low-intensity positive band at 390 nm. The fractions of helix β-form, and unordered form of the enzyme are 8, 38, and 54%, respectively. The circular dichroic bands at 327 and 480 nm and a part of the positive bands at 292 and 390 nm are associated with enzyme activity. Significant changes in absorption and CD spectra of the enzyme were observed when the temperature of the enzyme preparation was increased to 47°C, coinciding with the sharp decrease in enzyme activity observed at this temperature.  相似文献   

8.
The interaction of the intercalating dye ethidium bromide with several native and synthetic polydeoxyribonucleic acids has been studied by means of circular dichroic spectra. The CD of DNA-ethidium bromide complexes in the 290-360 nm region is characterized, especially at high salt and at high ethylene glycol content, by positive and negative bands near 308 nm and 295 nm, respectively. These dye associated CD bands are unaffected by the addition of LiCl or ethylene glycol, suggesting that the relative conformation of dye and neighboring base pairs does not change when the conformation of the rest of the DNA changes.  相似文献   

9.
Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor.   总被引:17,自引:4,他引:13       下载免费PDF全文
The gene coding for sensory rhodopsin I (SR-I) has been identified in a restriction fragment of genomic DNA from the Halobacterium halobium strain L33. Of the 1014 nucleotides whose sequence was determined, 720 belong to the structural gene of SR-I. In the 5' non-coding region two putative promoter elements and a ribosomal binding site have been identified. The 3' flanking region bears a potential terminator structure. The SR-I protein moiety carries no signal peptide and is not processed at its N terminus. The C terminus, however, lacks the last aspartic acid residue encoded by the gene. Analysis of the primary structure of SR-I reveals no consistent homology with the eukaryotic photoreceptor rhodopsin, but 14% homology with the halobacterial ion pumps, bacteriorhodopsin (BR) and halorhodopsin (HR). Residues conserved in all three proteins are discussed with respect to their contribution to secondary structure, retinal binding and ion translocation. The aspartic acid residue which mediates in BR the reprotonation of the Schiff base (D96) is replaced in SR-I by a tyrosine (Y87). This amino acid replacement is proposed to be of crucial importance in the evolution of the slow-cycling photosensing pigment SR-I.  相似文献   

10.
Halorhodopsin (HR) and sensory rhodopsin (SR) have been regenerated with retinal analogues that are covalently locked in the 6-s-cis or 6-s-trans conformations. Both pigments regenerate more completely with the locked 6-s-trans retinal and produce analogue pigments with absorption maxima (577 nm for HR and 592 nm for SR) nearly identical to those of the native pigments (577 and 587 nm). This indicates that HR and SR bind retinal in the 6-s-trans conformation. The opsin shift for the locked 6-s-trans analogue in HR is 1,200 cm-1 less than that for the native chromophore (5,400 cm-1). The opsin shift for the 6-s-trans analogue in SR is 1,100 cm-1 less than that for the native retinal (5,700 cm-1). This demonstrates that approximately 20% of the opsin shift in these pigments arises from a protein-induced change in the chromophore conformation from twisted 6-s-cis in solution to planar 6-s-trans in the protein. The reduced opsin shift observed for the locked 6-s-cis analogue pigments compared with the locked 6-s-trans pigments may be due to a positive electrostatic perturbation near C7.  相似文献   

11.
Ring desmethyl and acyclic analogues of all-trans retinal were incorporated into the apoprotein of the phototaxis receptor sensory rhodopsin I (SR-I) in Halobacterium halobium membranes. All modified retinals generate SR-I analogue pigments which exhibit "opsin shifts," i.e., their absorption spectra are shifted to longer wavelengths compared with model protonated Schiff bases of the same analogues. Each SR-I pigment analogue exhibits cyclic photochemical reactions as monitored by flash spectroscopy, but the analogue photocycles differ from that of native SR-I by exhibiting pronounced biphasic recovery of flash-induced absorption changes and abnormal flash-induced absorption difference spectra. Despite perturbations in the photochemical properties, the SR-I pigment analogues are capable of both attractant (single photon) and repellent (two photon) phototaxis signaling in cells. Our interpretation is that the hydrophobic ring substituents interact with the binding pocket to maintain the correct configuration for native SR-I absorption and photochemistry, but these interactions are not essential for the physiological function of SR-I as a dual attractant/repellent phototaxis receptor. These results support the conclusion emerging from several studies that the photoactivation process that triggers the conformation changes of SR-I and the related proton pump bacteriorhodopsin is conserved despite the different biological functions of their photoactivation.  相似文献   

12.
The circular dichroism (CD) of dihaem cytochrome b from mitochondrial and bacterial ubiquinol:cytochrome-c reductase (bc1 complex) has been characterized. The dichroic properties of the yeast purified cyt b are very similar to those of the native cyt b within the mitochondrial bc1 complex. The CD spectra in the Soret region of the native cytochrome b present in all species studied show an intense bisignate Cotton effect having a zero-crossing wavelength close to the absorbance maximum. In preparations partially or completely depleted of the low-potential b haem (b1) the CD spectra exhibit a single positive Cotton effect resembling the corresponding absorption spectrum. This is particularly evident in the purified cytochrome b-562 from Rhodobacter sphaeroides R26, which contains only the high-potential b haem (bh). These spectral features together with the reconstitution of the cytochrome b1 haem have been used to resolve the CD contribution of each haem to the CD spectra of cytochrome b. The mechanisms which might be responsible for the optical activity have been examined. It appears that the CD spectra of cytochrome b derive from both the mutual interaction of its two haems (giving rise to exciton coupling) and to the interaction of each haem with nearby aromatic residues, other than the pairs of histidines which coordinate the iron. The dipole coupling between haem and aromatic residues appears to be more important than exciton coupling in the CD spectra of oxidized b cytochromes and correlations have been made between the CD features and the proposed structure of cytochrome b.  相似文献   

13.
Henk Vasmel  Jan Amesz  Arnold J. Hoff 《BBA》1986,852(2-3):159-168
The optical properties of the reaction center of the filamentous green bacterium Chloroflexus aurantiacus, that contains three bacteriochlorophyll (BChl) a and three bacteriopheophytin (BPh) a molecules, were analyzed in the near-infrared region with the aid of exciton theory. The coordinates obtained from the X-ray analysis of the reaction center of Rhodopseudomonas viridis (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) were used for the geometry of the reaction center of C. aurantiacus, with the replacement of one of the ‘accessory’ BChl molecules by BPh. The results were found to be in good agreement with experimental low-temperature absorption spectra, linear and circular dichroism and fluorescence polarization spectra and lead to the following conclusions. The allowed, low-energy exciton transition of the primary electron donor (P-865) is located at 887 nm and carries the dipole strength of approx. two BChl a monomers; the high-energy exciton transition, around 790 nm, is mixed with wave functions of other pigments, which explains its relatively small angle with respect to the 887 nm transition. The optical transition of the accessory BChl a molecule near 812 nm has some contribution of the BChls that constitute P-865. This can account for the experimentally observed reorientation and shift of this transition upon oxidation of P-865. Two of the BPh molecules are located on the same (probably the M) polypeptide subunit and show a clear splitting of absorption bands (11 nm) due to exciton coupling; the single BPh on the opposite branch shows hardly any exciton shift. Similar calculations for reaction centers of purple bacteria that contain four BChl a and two BPh a molecules resulted in a very low dipole strength for the high-energy transition of the primary donor due to antisymmetric mixing with both accessory BChl a wave functions and gave very little splitting of the absorption bands of BPh a. Our results indicate that the arrangement of the chromophores in reaction centers of C. aurantiacus is very similar to that in purple bacteria. The functional L-chains of the reaction centers of purple and filamentous green bacteria consist of pigments of the same type in a probably very similar arrangement.  相似文献   

14.
The cobalt(II) derivative of cucumber basic blue copper protein "plantacyanin" has been prepared. The visible absorption, circular dichroic and magnetic circular dichroic spectra of Co(II)-plantacyanin are similar to those of Co(II)-plastocyanin, indicating that the stereochemistry of Co(II) is tetrahedral and at least one cysteinyl ligand around Co(II) ion is responsible for the strong charge transfer bands at 331 and ca. 390 nm.  相似文献   

15.
All the lysines of horse heart cytochrome c were maleylated yielding a low spin product. At room temperature and low salt concentration, this product lacked the 695 nm absorption band and showed tryptophan fluorescence and circular dichroic spectra typical of denatured cytochrome c. The 695 nm band and the native tryptophan fluorescence and circular dichroic spectra were restored by addition of salts, their effectiveness being dependent on the charge of the cation. On low salt concentration, the 695 nm band was also restored by lowering the temperature. Studies of the temperature dependence of the 695 nm band indicate that the thermal denaturation of maleylated cytochrome c occurs at temperatures 60-70 degrees C lower than in the native protein. This implies a destabilization of the native conformation by 5.6 kcal/mol; a similar value is evidenced by comparative urea denaturation studies on the native and modified proteins. The results confirm the assumption that the native conformation of cytochrome c is mostly determined by interactions involving internal residues.  相似文献   

16.
Khan MM  Muzammil S  Tayyab S 《Biochimie》2000,82(3):203-209
Chloroform-induced conformational changes of bilirubin (BR) bound to different serum albumins were studied by circular dichroism (CD) and fluorescence spectroscopy. Addition of a small amount of chloroform ( approximately 20 mM) to a solution containing 20 microM albumin and 15 microM BR changed the sign order and magnitude of the characteristic CD spectra of all BR-albumin complexes except BR-PSA complex which showed abnormal behavior. Monosignate negative CD Cotton effects (CDCEs) of BR complexed with SSA, GSA and BuSA were transformed into bisignate CDCEs in presence of chloroform akin to those exhibited by chloroform free solution of BR-HSA complex, indicating that the pigment acquired right handed plus (P) chirality when chloroform was added to these complexes. Bisignate CD spectra of BR complexed with HSA and BSA showed complete inversion upon addition of chloroform corroborating earlier findings. On the other hand, changes observed with BR-RSA complex were slightly different showing an additional CD band of weak intensity centered around 390 nm though inversion of CDCEs was similar to that of BR-HSA complex. Monosignate CD spectra of BR-PSA complex also showed three CD bands occurring at 409, 470 and 514 nm after chloroform addition. These results indicated significant but different effects of chloroform on the conformation of bound BR in BR-albumin complexes which can be ascribed to the changes in the exciton chirality of bilirubin probably due to altered hydrophobic microenvironment induced by the binding of chloroform at or near the ligand binding site. Chloroform severely quenched the intrinsic tryptophan fluorescence of the protein and shifted the emission maxima towards blue region in all the albumins except PSA. However, quantitative differences in both quenching and blue shift were noted in different serum albumins. This suggests that chloroform probably binds in the close vicinity of tryptophan residue(s) located in subdomain(s) IIA or IB and II both. The fluorescence of BR-albumin complexes was also found to be sensitive to the presence of a small amount of chloroform. But the changes observed in the fluorescence of the bound pigment in presence of chloroform were less marked as compared to the changes in the intrinsic fluorescence of protein per se. Taken together, these results suggest that there is at least one conserved site for chloroform binding in all these albumins which is at or near the BR binding site.  相似文献   

17.
Circular dichroic spectroscopy of non-human alpha-macroglobulins   总被引:1,自引:0,他引:1  
Bovine, chicken and frog alpha-macroglobulins and ovomacroglobulin were studied by circular dichroic spectroscopy over the region 205-250 nm. All four spectra exhibited negative ellipticity with minima at about 215 nm similar to that reported for human alpha 2-macroglobulin. On reaction of the alpha-macroglobulins with trypsin, the spectrum of each of the four changed similarly. However, these proteins exhibited different conformational changes when treated with methylamine. These differences were exploited to determine which characteristics of alpha-macroglobulins correlate with changes in circular dichroic spectroscopy.  相似文献   

18.
T Imae  S Ikeda 《Biopolymers》1975,14(6):1213-1221
Circular dichroism and absorption spectra are measured on mixed solutions of acridine orange and poly(S-carboxymethyl-L -cysteine) at different pH and P/D mixing ratios. The observed circular dichroism spectra are classified into several types, mainly based on the number and sign of circular dichroic bands in the visible region. Three of them are associated with the absorption spectra characteristic of dimeric dye or higher aggregates of dye. Type I is observed with solutions, of which the pH is acid and P/D is higher than 4, and it has an unsymmetrical pair of positive and negative dichroic bands at 470 and 430 nm. This type is induced on the dye bound to the polymer in the β-conformation. Types II and III are considered to be characteristic of randomly coiled polymers. Type II is exhibited by solutions of P/D higher than 1 at pH 5–7 and has two dichroic bands around the same wavelengths as Type I but with opposite signs and an additional positive band at 560 nm. Type III, shown by solutions of P/D 2–0.6 at pH 6–10.5, has three dichroic bands around the same wavelengths as Type II but with signs opposite to it. The other two types of circular dichroism, induced for the solutions of P/D less than 1 at slightly acid pH, are associated with the absorption spectra of monomeric dye and are observed with disordered or randomly coiled polymer. They have a pair of dichroic bands at 540 and 425 nm, and the signs of these bands are opposite to each other in these two types.  相似文献   

19.
Circular dichroic spectra have been obtained and resolved for the gonadotropins, ovine pituitary luteinizing hormone and human chorionic (urinary) gonadotropin, their subunits and glycopeptides. Much of the gonadotropin ellipticity above 250 nm can be attributed to the disulfide chromophore, although there are discernible contributions from tyrosyl and phenylalanyl residues as well. Of the two dissimilar subunits, the β-subunit makes the greatest contribution to the near-ultraviolet circular dichroic spectrum of the gonadotropins. From the position of the 0-0 tyrosyl band, i.e., 286–287 nm, one can ascertain that at least some of the tyrosyl residues of the gonadotropins are located in a hydrophobic environment. A positive circular dichroic extremum at 232.5 nm, present in luteinizing hormone but not in chorionic gonadotropin, can be ascribed to the α-subunit and probably results from tyrosines 21 and/or 30 in luteinizing hormone.An analysis of the circular dichroic difference spectrum above 230 nm, generated by subtracting the sum of the molecular ellipticities of the respective subunits from the molecular ellipticities of each gonadotropin, indicates that the local environment of disulfides and of tyrosyl residues is altered when gonadotropins dissociate. Circular dichroic difference spectra between the two α-subunits and between the two β-subunits indicated major contributions from- tyrosyl residues, presumably arising from tyrosyl substitutions.Between 200 and 230 nm, both gonadotropins exhibit negative circular dichroic extrema. The extremum occurs at 210 nm for luteinizing hormone and at 207.5 nm for chorionic gonadotropin. Each extremum can be described by two negative resolved bands, one at 215 nm and the other between 207 and 208.5 nm. The 215-nm resolved band is assigned to the peptide chromophore in a β-pleated sheet conformation and there is no evidence of α-helicity. The lower-wavelength resolved band is believed to have a significant contribution from the N-acetyl groups of glucosamine, galactosamine, and sialic acid, particularly since the glycopeptide fractions, prepared from each gonadotropin by digestion of the S-carboxymethyl derivatives with Pronase, exhibited a negative circular dichroic extremum at about 207 nm.The extent of β-structure in both gonadotropins is estimated to be about 28% whereas the separated subunits contain less β-structure, e.g., about 21 and 13% for the α- and β-subunits, respectively. The sum of the subunit β-structure, corrected for the respective molecular weight of each subunit, is about 17%. This is substantially less than that of the native hormone, thus indicating that significant conformational changes occur during gonadotropin dissociation to the biologically inactive subunits. Also, part of the gonadotropin β-structure may arise from intermolecular hydrogen bonding involving a pleated sheet arrangement between the subunits.  相似文献   

20.
Summary The circular dichroic spectrum of highly purified tetanus toxin has been determined between 200–310 nm. A comparison of the ellipticity between 207–243 nm and of the rotational strengths of the major resolved bands between 200–250 nm with the corresponding values from proteins of known conformation indicates that tetanus toxin contains about 20% -helix and 23% -structure. Above 250 nm the resolved spectrum showed contributions from tryptophanyl, tyrosyl, and phenylalanyl groups. The rotational strengths of the major near ultraviolet circular dichroic bands were significantly higher in the toxin than in low molecular weight peptides containing aromatic residues. This indicates that tetanus toxin has a stable tertiary structure.Andrew W. Mellon Foundation Teacher-Scholar Awardee.Camille and Henry Dreyfus Foundation Teacher-Scholar Awardee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号