首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments have examined the effect of phenylmercuric acetate(PMA) on the guard cells of Commelina communis. In one series,PMA was supplied to the leaf surface; after different time intervalsthe epidermis was removed and the ability of the stomata toopen was determined. In the other series, different concentrationsof PMA were included in the medium used for inccubating epidermalstrips with which ion-stimulated stomatal opening was assayed.At concentrations of 10-54 M and above the effect of PMA wassevere and the structural integrity of the guard cells was affected;they were unable to accumulate neutral red. At concentrationsarpound 10-6 M the guard cells were less affected and PMA broughtabout a transient stimulation of stomatal opening by releasingsubsidiary-cell turgor pressure. A solution of 5 x 10-4 M PMA applied to leaves reduced by halfthe photosynthetic 14CO2 incorporation into C. communis mesophyll.In Zea mays it increased the CO2 compensation point and alsothe resistance to diffusion in the gas phase (RA, but therewas a proportionately greater increase in the apparent liquidphase resistance (Rt). This direct inhibition of mesophyll photosynthesisundermines one of the major objectives of applying anatitranspirants,and for this reason it is suggested that PMA is unsuitable forgeneral application to crops.  相似文献   

2.
Epidermal strips and leaf fragments of Commelina and leaf fragmentsof maize were incubated on solutions containing naturally-occurringor synthetic cytokinins and/or ABA. The effects of these treatmentson stomatal behaviour were assessed. Cytokinins alone did notpromote stomatal opening in either species but concentrationsof both zeatin and kinetin from 10–3 to 10–1 molm–3 caused some reversal of ABA-stimulated closure ofmaize stomata. The reversal of the ABA effect increased withincreasing cytokinin concentration. Cytokinins had no effecton ABA-stimulated closure of Commelina stomata. When appliedalone, at high concentration (10–1 mol m–3), toCommelina epidermis or leaf pieces both zeatin and kinetin restrictedstomatal opening. Key words: ABA, Cytokinins, Stomata, Maize, Commelina  相似文献   

3.
Fluorescence microscopy indicated that chlorophyll was absentfrom epidermal and guard cells overlying all white areas andgreen areas (of certain leaves) in variegated leaves of Pelargoniumzonale, cv. Chelsea Gem. Stomata with chlorophyll-free guardcells, in general, responded normally to light and CO2 as gaugedby direct measurements of stomatal aperture and by transpirationalwater loss studies, although stomata from white regions of variegatedleaves were more reluctant to open than stomata from green regionsof the leaves. Thus, functional stomata without guard cell chloroplastshave been discovered in another genus, namely Pelargonium, besidesthat originally discovered in Paphiopedilum. When stomata withchlorophyll-free guard cells opened, K+ accumulated in the guardcells. This indicates that chloroplasts are not essential forthe normal functioning of stomata and that the energy sourcefor driving stomatal movements can come from sources other thanphotophosphorylation. Key words: Guard cell chloroplasts, Leaf chimera, Pelargonium, Stomata  相似文献   

4.
Infection of barley leaves by the fungus Rhynchosporium secalisincreases the degree to which stomata open in the light. Openingis enhanced at CO2, levels between 0 and 4000 parts/106. Theability of stomata to close in the dark, as normal, is retaineduntil an advanced stage of tissue necrosis is reached. Increased stomatal opening is confined to those areas of theleaf which have been colonized by the fungus. Abnormal stomatalbehaviour results from the loss of osmotically active substancesfrom the epidermis of diseased leaves with a consequent alterationof the turgor relations between guard cells and their surroundingepidermal cells.  相似文献   

5.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

6.
Dark CO2-fixation in guard cells of Vicia faba was much moresensitive to ammonium than in mesophyll cells. Addition of ammonium(5.0 mol m–3; pH0 7.6) caused up to a 7-fold increasein dark CO2-fixation rates in guard cell protoplasts (GCP),whereas in leaf slices, mesophyll cells, and mesophyll protoplaststhe increase was only about 1.4-fold. In both cell or tissuetypes, total CO2-fixation rates were higher in the light (2–12-foldhigher in GCP and 28-fold in mesophyll); these rates were onlyslightly changed by ammonium treatment. However, separationof 14C-labelled products after fixation of CO2 in the lightby GCP revealed a large ammonium-induced shift in carbon flowfrom starch and sugars to typical products of C4-metabolism(mainly malate and aspartate). In contrast, in mesophyll cellsamino acid and malate labelling was only moderately increasedby ammonium at the expense of sucrose. The data suggest thatin vivo ammonium might facilitate stomatal opening and/or delaystomatal closing through an increased production of organicacids. Key words: PEP-carboxylation, guard cell protoplasts, ammonium, fusicoccin  相似文献   

7.
A comparison was made of stomatal behaviour, and related phenomena,between leaves of garden pea (Pisum sativum cv. Feltham First)inoculated with powdery mildew fungus (Erysiphe pisi) and uninfectedleaves on healthy plants. Twenty four hours after inoculation,stomata opened more widely in the light in infected leaves thanin healthy leaves. Thereafter, stomatal opening was progressivelyreduced by infection and stomata failed to close completelyin the dark until, 7 d after inoculation, all movements ceasedand stomata remained partly open. Transpiration in the lightfollowed closely the pattem of stomatal opening and, after anearly increase compared with healthy controls, was progressivelyreduced by infection. Evidence is presented that transpirationfrom the fungus was less than the reduction in transpiraationfrom the leaf which was caused when development of the myceliumincreased the boundary layer resistance of the leaf. Seven daysafter inoculation, transpiration in the dark was greater frominfected leaves than from healthy leaves because of partly openstomata in the dark. Net photosynthesis in infected leaves was reduced within 24h of inoculation to a level below that found in healthy leavesand thereafter it declined progressively. The initial reductionwas due to a transient increase in photorespiration, for whenthe glycolate pathway was inhibited by a 2% O2 concentrationthere was no difference between the (gross) photosynthetic ratesof healthy and infected leaves. Changes in photorespirationrate were confirmed from the interpretation of the CO2 burston darkening. Reduced stomatal opening was a contributory causeof the reduction in net photosynthesis in the later stages ofinfection. Since the rate of gross photosynthesis, but not therate of photorespiration, of infected plants fell below thatof healthy plants, and infected plants had a higher rate ofrelease of CO2 in the dark than healthy plants from the thirdday after inoculation onwards, infected plants consume an increasinglygreater proportion of their photosynthate in respiratory processesthan do healthy plants. The CO2 compensation point of infectedplants increased at every time of sampling after inoculation.  相似文献   

8.
Commercially available cell wall-degrading enzymes frequentlyused for protoplast isolation inhibited CO2 fixation and photosyntheticO2 evolution, and stimulated dark respiration by leaf tissueand isolated mesophyll protoplasts of Nicotiana tabacum L. andAntirrhinum majus L. They also depolarized the membrane potentialof cells of leaf tissue, inhibited uptake of 86Rb by tobaccoleaf tissue and isolated mesophyll protoplasts, and stimulated36CI uptake by tobacco leaf tissue. Where studied, these effectswere found to be reversible. The depolarization effect on Antirrhinumleaf cells occurred even when the enzyme preparations had beendenatured, dialysed, or desalted, and the effect was greatestin those fractions of the enzyme preparation which showed thehighest cellulase activity. Plasmolysis of tobacco leaf tissue inhibited photosyntheticO2 evolution, CO2 fixation, and 86Rb uptake to levels belowthose exhibited by isolated protoplasts in media of the samecomposition and osmolarity. The implications of these resultsfor work with leaf tissue and isolated protoplasts are discussed.  相似文献   

9.
Tentoxin and, to a lesser extent, dihydrotentoxin (both at 10mmol m–3) reduce stomatal opening in epidermal stripsof Commelina communis in the light but not in darkness. Thiseffect was significantly greater in normal air than in CO2-freeair. Fusicoccin overcame the tentoxin effect. However, tentoxindid not inhibit stomatal opening in the light in epidermal stripsof Paphiopedilum harrisianum, a species which lacks guard cellchloroplasts. It is concluded that tentoxin exerts its actionon stomata not by an ionophorous effect in the plasmalemma ofguard cells but by the inhibition of photophosphorylation intheir chloroplasts. The effects of DCMU and tentoxin on guardcells are discussed in terms of their effects on chloroplastsand the extent to which energy is supplied from this organelleduring stomatal opening in the light. The results indicate thatneither photophosphorylation nor non-cyclic electron transportin guard cell chloroplasts are essential for stomatal opening. Key words: Commelina, epidermal strips, Paphiopedilum, photophosphorylation, stomata, tentoxin  相似文献   

10.
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.Stomatal responses to the environment have been studied in leaves for well over 100 years. More recently, the mechanisms for these responses have been investigated using isolated epidermes or isolated guard cell protoplasts. Despite the combination of these two approaches, the mechanisms by which stomata respond to environmental signals are not well understood. Since stomata control CO2 uptake and water loss from leaves, the responses of stomata to environmental factors are important determinants of terrestrial productivity and water use. It is therefore critical that we understand the mechanisms by which stomata respond to the environment if we are to accurately predict the effects of future climates on productivity and water cycles (Randall et al., 1996).There are two assumptions about stomata that are implicit in much of the recent literature: (1) that stomatal responses result from sensory mechanisms that reside within the guard cells, and (2) that stomata in isolated epidermes respond similarly to those in a leaf. The exception to this generalization is the stomatal response to humidity, which has been suggested to be the result of changes in guard cell water potential (Dewar, 1995, 2002) or of signaling from other cells in the leaf to the guard cells (Buckley et al., 2003). The assumption that guard cells directly sense CO2 and light is largely based on data from isolated epidermes that show effects of light and CO2 on stomatal apertures. As pointed out by Mott (2009), however, stomatal responses to light and CO2 in isolated epidermes are generally much different from those observed in leaves; e.g. responses in isolated epidermes are generally smaller than those in leaves, opening in response to light is slower, and closing in darkness is rarely observed. These observations were used to suggest that the mesophyll is somehow involved in stomatal responses to red light and CO2. This idea is supported by several recent studies that suggest that guard cells do not respond directly to red light. In the first of these studies it was shown that guard cells in an intact leaf do not show hyperpolarization of the plasma membrane in response to red light if the red light is applied to only the guard cell (Roelfsema et al., 2002). In contrast, blue light applied only to the guard cell does cause hyperpolarization, and red light does cause hyperpolarization if applied to the guard cell and the underlying mesophyll. The second study showed that stomata in albino areas of a leaf do not respond to red light, although they contain chloroplasts and do respond to blue light (Roelfsema et al., 2006). Finally, a third study has shown that isolated epidermes are much more sensitive to light and CO2 when placed in close contact with an exposed mesophyll from a leaf from the same or a different species (Mott et al., 2008). These epidermis-mesophyll grafts showed stomatal responses to light and CO2 that were indistinguishable from those in an intact leaf—a sharp contrast to the behavior of stomata in isolated epidermes that are floating on buffer solutions. In that study, illumination of a single stoma in a leaf using a small-diameter fiber optic did not produce stomatal opening, but opening did occur if several stomata and the underlying mesophyll were illuminated. Furthermore, this treatment actually caused opening of adjacent, but unilluminated, stomata (Mott et al., 2008).In constructing the epidermis-mesophyll grafts in the study described above (Mott et al., 2008), it was noticed that functional grafts could be produced only if both the mesophyll and the epidermis were blotted completely dry of any free water before placing them together. Although the tissues were apparently still fully hydrated, there was very little free water present (i.e. water not contained within the walls of the leaf cells), and both the mesophyll and epidermis felt and looked dry prior to assembly. In addition, even when free water was blotted away initially, stomata did not open in grafts that ended up with visible water on the epidermis or mesophyll that was caused by condensation during the experiment. These observations suggest that the presence of free water somehow prevented the stomata in the grafts from opening. Assuming that the mechanisms operating in the grafts were similar to those in an intact leaf, this result also suggests that free water may have an effect on stomata in leaves as well. In addition, it seems possible that the effect of free water on stomata could be related to the disruption of the signal from the mesophyll that was proposed in an earlier study (Mott et al., 2008). We hypothesize that disruption of this signal could be caused by (1) dilution of some solute that is necessary for opening (such as K+) in the guard cell walls, (2) dilution of an apoplastic, liquid-phase opening signal from the mesophyll to the guard cells, and (3) blockage of a vapor-phase opening signal from the mesophyll to the guard cells. This study was initiated to test these three hypotheses by examining the effect of free water and other liquids on stomatal functioning.  相似文献   

11.
In situ Observations of Stomatal Movements   总被引:8,自引:0,他引:8  
Kappen, L., Andresen, G. and L?sch, R. 1987. In situ observationsof stomatal movements.—J. exp. Bot. 38: 126–141. A device is described by which stomatal movements in situ canbe observed and recorded continuously in light and in darkness.It is mounted in a conditioned CO2 exchange measuring chamberso that stomatal movements can be observed whilst CO2 exchange(photosynthesis and respiration) of the same leaf is measured.Advantages and limitations are discussed. By this method itwas shown that stomata of Vicia faba although responding inthe same direction to environmental stimuli exhibited a widerange of pore widths. Responses to changes of air humidity andof CO2 content were clearly evident when the leaves were exposedto light. Before stomata closed due to decreasing water vapourpressure differences between leaf and air they showed a markedwidening of the pore. An inverse response occurred when watervapour pressure deficit decreased. In darkness stomata did notrespond to such changes. Key words: Stomata, leaf gas exchange, microscopic observation  相似文献   

12.
Epidermal strips from either well-watered or water-stressedplants of Commelina communis L. were subjected to a range ofABA concentrations (10–6–10–3 mol m–3)in the presence (330 parts 10–6 in air) or virtual absence(3 parts 10–6 in air) of CO2. The stomatal response toCO2 was greater in epidermis from water-stressed plants, althoughthere was a distinct CO2 response in epidermis from well-wateredplants. Additions of ABA via the incubation medium had littleeffect on the relative CO2 response. Stomata responded to ABAboth in the presence and virtual absence of CO2, but the relativeresponse to ABA was greatest in the high CO2 treatment. Whenwell-watered plants were sprayed with a 10–1 mol m–3ABA solution 1 d prior to use, the stomatal response of detachedepidermis to both CO2 and ABA was very similar to that of epidermisdetached from water-stressed leaves. It is hypothesized thata prolonged exposure to ABA is necessary before there is anymodification of the CO2 response of stomata.  相似文献   

13.
Morphological and physiological characteristics of micropropagatedplants of Delphinium cv. Princess Caroline were studied. Leavesproduced in vitro showed poor control of water loss which appearsto result from restricted responses by stomata and not frompoor cuticular development. Stomata of leaves produced in vitrowere larger and more frequent than those produced during acclimatization.Despite the fact that stomata from isolated epidermis of leavesproduced in vitro reduced their apertures when exposed to turgor-reducingtreatments, they did not close fully. This, together with highstomatal frequencies might explain the poor control of waterloss shown by intact leaves produced in culture when exposedto dry air. While leaves from acclimatized plants showed almostcomplete closure with ABA, low water potentials, darkness andCO2, stomata from leaves produced in vitro reduced their apertureswhen exposed to those factors, but only to a limit. Therefore,stomata from leaves cultured in vitro seem to be partially functional,but some physiological or anatomical alteration prevents themfrom closing fully. Stomata from leaves produced in vitro wereparticularly insensitive to ABA which appears to be partly associatedwith the high cytokinin concentration in the culture medium.In the long-term, this stomatal insensitivity to ABA might contributeto plant losses when micropropagated plantlets are transferredto soil. Key words: Micropropagation, stomatal physiology, dehydration, PEG, ABA, BAP, darkness, CO2, Delphinium  相似文献   

14.
CO2 uptake and diffusion conductance of Valencia orange fruits(Citrus sinensis L. Osbeck) were measured in the field duringthe growing season of 1977/78 to ascertain if, as in the leaf,stomata control photosynthesis and transpiration under changingenvironmental conditions. Measurements were made on 15 yearold trees grown in a sandy loam soil and receiving either adry or a wet treatment. Fruit diffusive conductance was measuredwith a modified water vapour diffusion conductance meter andgross photosynthesis was measured with a 14CO2 uptake meter.Photosynthetically active radiation (PAR) was measured witha quantum sensor. Fruits exposed to light assimilated CO2 ata rate which was 25–50% of that assimilated by leaves.The uptake was dependent on fruit size, PAR, chlorophyll content,and on diffusive conductance of the fruit epidermis. Epidermalconductance showed a diurnal trend which was similar in shapeto that of the leaf except in the late afternoon. Cuticularconductance of the fruit was calculated and ranged between 0.22and 0.30 mm s–1. It was speculated that the CO2 uptakeby the fruit could support the growth of flavedo cell layerswhen exposed to light. Dry soil caused an increase in the 14CO2uptake by fruit possibly caused by the increased potential areaof the stomatal opening per unit of fruit surface area.  相似文献   

15.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

16.
Plants of ryegrass (Lolium perenne L. cv. Melle) were grownfrom the early seedling stage in growth cabinets at a day/nighttemperature of 20/15 °C, with a 12-h photoperiod, and aCO2 concentration of either 340 or 680 ± 15 µl1–1 CO2. Young, fully-expanded, acclimated leaves fromprimary branches were sampled for length of stomata, and ofepidermal cells between stomata, numbers of stomata and epidermalcells per unit length of stomatal row, numbers of stomatal rowsacross the leaf and numbers of stomatal rows between adjacentvein ridges. Elevated CO2 had no significant effect on any ofthe measured parameters. Elevated CO2, Lolium perenne, ryegrass, stomatal distribution, stomatal size  相似文献   

17.
Willmer, C. M., Wilson, A. B. and Jones, H. G. 1988. Changingresponses of stomata to abscisic acid and CO2 as leaves andplants age.—J. exp. Bot. 39: 401–410. Stomatal conductances were measured in ageing leaves of Commelinacommunis L. as plants developed; stomatal responses to CO2 andabscisic acid (ABA) in epidermal strips of C. communis takenfrom ageing leaves of developing plants and in epidermal stripsfrom the same-aged leaves (the first fully-expanded leaf) ofdeveloping plants were also monitored. Stomatal behaviour wascorrelated with parallel measurements of photosynthesis andleaf ABA concentrations. Stomatal conductance in intact leavesdecreased from a maximum of 0-9 cm s– 1 at full leaf expansionto zero about 30 d later when leaves were very senescent. Conductancesdeclined more slowly with age in unshaded leaves. Photosynthesisof leaf slices also declined with age from a maximum at fullleaf expansion until about 30 d later when no O2 exchange wasdetectable. Exogenously applied ABA (0.1 mol m– 3) didnot affect respiration or photosynthesis. In epidermal stripstaken from ageing leaves the widest stomatal apertures occurredabout 10 d after full leaf expansion (just before floweringbegan) and then decreased with age; this decrease was less dramaticin unshaded leaves. The inhibitory effects of ABA on stomatalopening in epidermal strips decreased as leaves aged and wasgreater in the presence of CO2 than in its absence. When leaveswere almost fully-senescent stomata were still able to open.At this stage, guard cells remained healthy-looking with greenchloroplasts while mesophyll cells were senescing and theirchloroplasts were yellow. Similar data were obtained for stomatain epidermal strips taken from the same-aged leaves of ageingplants. The inhibitory effects of ABA on stomatal opening alsodecreased with plant age. In ageing leaves both free and conjugated ABA concentrationsremained low before increasing dramatically about 30 d afterfull leaf expansion when senescence was well advanced. Concentrationsof free and conjugated ABA remained similar to each other atall times. It is concluded that the restriction of stomatal movements inintact leaves as the leaves and plants age is due mainly toa fall in photosynthetic capacity of the leaves which affectsintracellular CO2 levels rather than to an inherent inabilityof the stomata to function normally. Since stomatal aperturein epidermal strips declines with plant and leaf age and stomatabecome less responsive to ABA (while endogenous leaf ABA levelsremain fairly constant until leaf senescence) it is suggestedthat some signal, other than ABA, is transmitted from the leafor other parts of the plant to the stomata and influences theirbehaviour. Key words: Abscisic acid, CO2, Commelina, leaf age, senescence, stomatal sensitivity  相似文献   

18.
Stomatal Responses and the Senescence of Leaves   总被引:1,自引:0,他引:1  
WARDLE  K.; SHORT  K. C. 《Annals of botany》1983,52(3):411-412
Guard cell responses were examined in green and senescing leavesof Victa faba using detached epidermal strips to eliminate influencesfrom the mesophyll. Stomatal opening was greater in epidermalstrips from mature leaves than from senescing leaves althoughthe latter still retained the ability to respond to CO2 andto kinetin. It was concluded that the decline in stomatal activityduring senescence is an independent but parallel process tochanges occurring in the mesophyll. Vicia faba, leaf senescence, stomata, kinetin  相似文献   

19.
Leaves from in vitro and greenhouse cultured plants of Malusdomestica (Borkh.) cv. Mark were subjected to 4 h of darkness;4 h of 1 M mannitol induced water stress; 1 h of 10–4M to 10–7 M cis-trans abscisic acid (ABA) treatment; 1h of 0.12% atmospheric CO2. Stomatal closure was determinedby microscopic examination of leaf imprints. In all treatments,less than 5% of the stomata from leaves of in vitro culturedplants were closed. The diameter of open stomata on leaves fromin vitro culture remained at 8 µm. In contrast, an averageof 96% of the stomata on leaves of greenhouse grown plants wereclosed after 4 h in darkness; 56% after 4 h of mannitol inducedwater stress; 90% after 1 h of 10–4 M ABA treatment; 61%after 1 h in an atmosphere of 0.12% CO2. Stomata of in vitroapple leaves did not seem to have a closure mechanism, but acquiredone during acclimatization to the greenhouse environment. Thelack of stomatal closure in in vitro plants was the main causeof rapid water loss during transfer to low relative humidity.  相似文献   

20.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号