首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under aerobic conditions, tyrosinase is inactivated by dopa as a result of suicide inactivation, and, under anaerobic conditions, as a result of irreversible inactivation. However, tyrosine protects the enzyme from being inactivated by dopa under anaerobic conditions. This paper describes how under aerobic conditions the enzyme acting on tyrosine is not directly inactivated but undergoes a process of indirect suicide inactivation provoked by reaction with the o-diphenol originated from the evolution of o-dopaquinone and accumulated in the reaction medium.  相似文献   

2.
Abstract

Under anaerobic conditions, the o-diphenol 4-tert-butylcatechol (TBC) irreversibly inactivates met and deoxytyrosinase enzymatic forms of tyrosinase. However, the monophenol 4-tert-butylphenol (TBF) protects the enzyme from this inactivation. Under aerobic conditions, the enzyme suffers suicide inactivation when it acts on TBC. We suggest that TBF does not directly cause the suicide inactivation of the enzyme in the hydroxylase activity, but that the o-diphenol, which is necessary for the system to reach the steady state, is responsible for the process. Therefore, monophenols do not induce the suicide inactivation of tyrosinase in its hydroxylase activity, and there is a great difference between the monophenols that give rise to unstable o-quinones such as L-tyrosine, which rapidly accumulate L-dopa in the medium and those like TBF, after oxidation, give rise to a very stable o-quinone.  相似文献   

3.
Under aerobic or anaerobic conditions, tyrosinase undergoes a process of irreversible inactivation induced by its physiological substrate l-dopa. Under aerobic conditions, this inactivation occurs through a process of suicide inactivation involving the form oxy-tyrosinase. Under anaerobic conditions, both the met- and deoxy-tyrosinase forms undergo irreversible inactivation. Suicide inactivation in aerobic conditions is slower than the irreversible inactivation under anaerobic conditions. The enzyme has less affinity for the isomer d-dopa than for l-dopa but the velocity of inactivation is the same. We propose mechanisms to explain these processes.  相似文献   

4.
5.
Frog epidermis tyrosinase inactivation by dithiothreitol (DTT), both in the proenzyme and active forms, have been studied. Upon increasing DTT:enzyme-up to 1o(6):1 ratios and depending on the incubation period, two inactivation steps both in proenzyme and enzyme were observed. Enzyme lost its activity faster than proenzyme. Oxygen favoured inactivation. After dialysis of the DTT:protein (10(6):1) incubation medium, 20% of the original enzyme activity was recovered. However it decreased to 15% if the enzyme had been incubated with substrate. Conformational changes due to loss of activity were not shown on the fluorescence spectra.  相似文献   

6.
To address the real cause of the suicide inactivation of mushroom tyrosinase (MT), under in vitro conditions, cresolase and catecholase reactions of this enzyme were investigated in the presence of three different pairs of substrates, which had been selected for their structural specifications. It was showed that the cresolase activity is more vulnerable to the inactivation. Acetylation of the free tyrosyl residues of MT did not cure susceptibility of the cresolase activity, but clearly decreased the inactivation rate of MT in the presence of 4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat) as a catecholase substrate. Considering the results of the previous works and this research, some different possible reasons for the suicide inactivation of MT have been discussed. Accordingly, it was proposed that the interruption in the conformational changes in the tertiary and quaternary structures of MT, triggered by the substrate then mediated by the solvent molecules, might be the real reason for the suicide inactivation of the enzyme. However, minor causes like the toxic effect of the ortho-quinones on the protein body of the enzyme or the oxidation of some free tyrosyl residues on the surface of the enzyme by itself, which could boost the inactivation rate, should not be ignored.  相似文献   

7.
8.
9.
An unusual thioether bridge (Cys-His) has been detected at the active site of mushroom tyrosinase, and the effects of thiohydroxyl compounds such as dithiothreitol (DTT) and beta-mercaptoethanol (beta-ME) on Cu2+ at the active site have been elucidated. Treatment with DTT and beta-ME on mushroom tyrosinase completely inactivated 3,4-dihydroxyphenylalanine oxidase activity in a dose-dependent manner. Sequential kinetic studies revealed that DTT and beta-ME caused different mixed-type inhibition mechanisms: the slope-parabolic competitive inhibition (Ki = 0.143 mM) by DTT and slope-hyperbolic noncompetitive inhibition (Ki = 0.0128 mM) by beta-ME, respectively. Kinetic Scatchard analysis consistently showed that mushroom tyrosinase had multiple binding sites for DTT and beta-ME with different affinities. Reactivation study of inactivated enzyme by addition of Cu2+ confirmed that DTT and beta-ME directly bound with Cu2+ at the active site. Our results may provide useful information regarding interactions of tyrosinase inhibitor for designing an effective whitening agent targeted to the tyrosinase active site.  相似文献   

10.
Tyrosinase has a suicide inactivation reaction when it acts on omicron-diphenols. In the present paper, this reaction has been studied using a transient phase approach. Explicit equations of product vs. time have been developed for the multisubstrate mechanism of tyrosinase, and the kinetic parameters which characterize the enzyme acting on the suicide substrate catechol have been determined. The effect of pH has also been considered.  相似文献   

11.
Suicide inactivation of fructose-1,6-bisphosphate aldolase   总被引:1,自引:0,他引:1  
2-Keto-4,4,4-trifluorobutyl phosphate (HTFP) was prepared from 3,3,3-trifluoropropionic acid. HTFP acts as an irreversible inhibitor of rabbit muscle aldolase: the loss of activity was time dependent and the inactivation followed a pseudo-first-order process. Values of 1.4 mM for the dissociation constant and 2.3 X 10(-2) s-1 for the reaction rate constant were determined. The kinetic constants do not depend on the enzyme concentration. No effect of thiols on the inactivation rate was detected. Only 1-2 mol of fluoride ions was liberated per inactivated subunit, indicative of a low partition ratio. Dihydroxyacetone phosphate protected the enzyme against the inactivation in a competitive manner, and glyceraldehyde 3-phosphate protected as if it formed a condensation product with HTPF. 5,5'-Dithiobis(2-nitrobenzoic acid) thiol titration showed the loss of one very reactive thiol group per enzyme subunit after inactivation. All those observations seem to agree with a suicide substrate inactivation of aldolase by HTPF.  相似文献   

12.
The inactivation of tyrosinase by resorcinol (1,3-dihydroxybenzene) and seventeen simple derivatives has been investigated using combined spectrophotometry and oximetry together with hplc/ms examination of the oxidation products. The results are consistent with a Quintox mechanism, analogous to that proposed for catechol inactivation of tyrosinase, in which the resorcinol substrate is oxidised via the monooxygenase route leading to a hydroxy intermediate that undergoes deprotonation and results in irreversible elimination of Cu(0) from the active site. Hplc/ms evidence for formation of the resorcinol monooxygenase product (3-hydroxy-ortho-quinone) is presented and the relationship between the ring position of simple resorcinol substituents (H, Me, F, Cl) and tyrosinase inactivation is rationalised.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The unfolding and inhibition study of mushroom tyrosinase have been studied in the presence of different denaturants such as sodium dodecyl sulfate (SDS), guanidine hydrochloride (GdnHCl), and urea. The kinetic two-phase rate constants were commonly measured from semilogarithmic plots of the activity versus time, which resolved into two straight lines, indicating that the inactivation process consisted of fast and slow phases as a first-order reaction. This result also implied that transient partially folded intermediate existed during tyrosinase unfolding pathway. Mushroom tyrosinase had different behaviors to denaturants in regard with: noncooperative binding manner by SDS while cooperative interactions by GdnHCl and urea; in equilibrium state, SDS-micelle never completely inactivated enzyme activity while GdnHCl has single step denaturation and urea induced a typical transition-like process. Various kinetic parameters for each denaturant were calculated and the possible unfolding pathway scheme was discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号