首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Characterization of two genes for the human Na,K-ATPase beta subunit   总被引:7,自引:0,他引:7  
  相似文献   

2.
3.
4.
5.
We have isolated cDNA clones from rat brain and human liver encoding a putative isoform of the Na,K-ATPase beta subunit. The rat brain cDNA contains an open reading frame of 870 nucleotides coding for a protein of 290 amino acids with a calculated molecular weight of 33,412. The corresponding amino acid sequence shows 98% identity with its human liver counterpart. The proteins encoded by the rat and human cDNAs exhibit a high degree of primary sequence and secondary structure similarity with the rat Na,K-ATPase beta subunit. We have therefore termed the polypeptides these cDNAs encode a beta 2 subunit with the previously characterized rat cDNA encoding a beta 1 subunit. Analysis of rat tissue RNA reveals that the beta 2 subunit gene encodes a 3.4-kilobase mRNA which is expressed in a tissue specific fashion distinct from that of rat beta 1 subunit mRNA. Cell lines derived from the rat central nervous system shown to lack beta 1 subunit mRNA sequences were found to express beta 2 subunit mRNA. These results suggest that different members of the Na,K-ATPase beta subunit family may have specialized functions.  相似文献   

6.
Structure of the alpha 1 subunit of horse Na,K-ATPase gene   总被引:6,自引:0,他引:6  
Genomic DNA for Na,K-ATPase alpha 1 subunit was obtained from libraries of horse kidney genomic DNA in Charon 4A and in EMBL3 bacteriophages by screening with the full sized cDNA probe of the alpha 1 subunit of rat Na,K-ATPase as probe. The gene spans 30 kb and consists of 23 exons and 22 intervening sequences. Intron-exon boundaries were analyzed. The protein-coding nucleotide sequence encodes 1016 amino acids with an Mr of 112,264. The putative amino acid sequence of horse alpha 1 is 96-97% homologous to those of other mammalian species.  相似文献   

7.
8.
We have isolated cDNA clones encoding the bovine and rat gastric H,K-ATPase beta subunit. A bovine abomasum lambda gt11 cDNA library was screened with a monoclonal antibody raised against the rabbit H,K-ATPase beta subunit. A single positive phage clone containing an approximately 900-base pair cDNA insert was identified as reactive with the antibody. The identity of the cDNA was established by comparing the deduced amino acid sequence with sequences of cyanogen bromide fragments of the porcine H,K-ATPase beta subunit. Polymerase chain reaction and rapid amplification of cDNA ends were used to generate a cDNA fragment encoding the carboxyl-terminal portion of the rat gastric H,K-ATPase beta subunit. A rat stomach cDNA library was screened with the polymerase chain reaction product, and several full-length beta subunit cDNA clones were identified. The open reading frame predicts a protein of 294 amino acids with a molecular weight of 33,689. The rat H,K-ATPase beta subunit shows 41% amino acid sequence identity to the rat Na,K-ATPase beta 2 subunit and shares a number of structural similarities with Na,K-ATPase beta subunit isoforms. By analyzing the segregation of restriction fragment length polymorphisms among recombinant inbred strains of mice, we localized the H,K-ATPase beta subunit gene to murine chromosome 8. Northern and Western blot analysis reveals that this gene is expressed exclusively in stomach. Our results suggest that the H,K-ATPase and Na,K-ATPase beta subunits evolved from a common ancestral gene and may play similar functional roles in enzyme activity.  相似文献   

9.
10.
11.
The genes coding for the beta and epsilon subunits of the mouse muscle nicotinic acetylcholine receptor (nAChR) were mapped by Southern blot analysis, and the entire loci for both genes cloned. The results indicate that they are single-copy genes. Both were sequenced to determine their size and structural organization. The beta subunit gene spans approximately 8 kilobases and is organized into 11 exons. A region containing cysteines, which are thought to form a disulfide bond and which are highly conserved, is encoded by one exon in all muscle acetylcholine receptor genes with the exception of the beta subunit gene, where it is split into two exons. The epsilon subunit gene spans 4.3 kilobases and contains 12 exons; it has the same structure as the gamma and delta nAChR genes. The intron-exon boundaries and exonic organization of the five known nAChR genes were compared. The analysis showed that the first 4 exons and the last exon of all muscle and brain nAChR subunit genes have the same boundaries, with the exception of a nAChR-related gene in Drosophila.  相似文献   

12.
13.
14.
AMOG (adhesion molecule on glia) is a Ca2(+)-independent adhesion molecule which mediates selective neuron-astrocyte interaction in vitro (Antonicek, H., E. Persohn, and M. Schachner. 1987. J. Cell Biol. 104:1587-1595). Here we report the structure of AMOG and its association with the Na,K-ATPase. The complete cDNA sequence of mouse AMOG revealed 40% amino acid identity with the previously cloned beta subunit of rat brain Na,K-ATPase. Immunoaffinity-purified AMOG and the beta subunit of detergent-purified brain Na,K-ATPase had identical apparent molecular weights, and were immunologically cross-reactive. Immunoaffinity-purified AMOG was associated with a protein of 100,000 Mr. Monoclonal antibodies revealed that this associated protein comprised the alpha 2 (and possibly alpha 3) isoforms of the Na,K-ATPase catalytic subunit, but not alpha 1. The monoclonal AMOG antibody that blocks adhesion was shown to interact with Na,K-ATPase in intact cultured astrocytes by its ability to increase ouabain-inhibitable 86Rb+ uptake. AMOG-mediated adhesion occurred, however, both at 4 degrees C and in the presence of ouabain, an inhibitor of the Na,K-ATPase. Both AMOG and the beta subunit are predicted to be extracellularly exposed glycoproteins with single transmembrane segments, quite different in structure from the Na,K-ATPase alpha subunit or any other ion pump. We hypothesize that AMOG or variants of the beta subunit of the Na,K-ATPase, tightly associated with an alpha subunit, are recognition elements for adhesion that subsequently link cell adhesion with ion transport.  相似文献   

15.
We have isolated and characterized cDNA clones encoding the murine homologue of a putative fourth Na,K-ATPase alpha subunit isoform (alpha4). The predicted polypeptide is 1032 amino acids in length and exhibits 75% amino acid sequence identity to the rat alpha1, alpha2, and alpha3 subunits. Within the first extracellular loop, the alpha4 subunit is highly divergent from other Na,K-ATPase alpha subunits. Because this region of Na,K-ATPase is a major determinant of ouabain sensitivity, we tested the ability of the rodent alpha4 subunit to transfer ouabain resistance in a transfection protocol. We find that a cDNA containing the complete rodent alpha4 ORF is capable of conferring low levels of ouabain resistance upon HEK 293 cells, an indication that the alpha4 subunit can substitute for the endogenous ouabain-sensitive alpha subunit of human cells. Nucleotide sequences specific for the murine alpha4 subunit were used to identify the chromosomal position of the alpha4 subunit gene. By hybridizing an alpha4 probe with a series of BACs, we localized the alpha4 subunit gene (Atp1a4) to the distal portion of mouse chromosome 1, in very close proximity to the murine Na,K-ATPase alpha2 subunit gene. In adult mouse tissues, we detected expression of the alpha4 subunit gene almost exclusively in testis, with low levels of expression in epididymis. The close similarities in the organization and expression pattern of the murine and human alpha4 subunit genes suggest that these two genes are orthologous. Together, our studies indicate that the alpha4 subunit represents a functional Na,K-ATPase alpha subunit isoform.  相似文献   

16.
17.
Keryanov S  Gardner KL 《Gene》2002,292(1-2):151-166
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号