首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Triple helix formation by purine-rich oligonucleotides in the anti-parallel motif is inhibited by physiological concentrations of potassium. Substitution with 7-deazaxanthine (c7X) has been suggested as a strategy to overcome this effect. We have tested this by examining triple helix formation both in vitro and in vivo by a series of triple helix-forming oligonucleotides (TFOs) containing guanine plus either adenine, thymine, or c7X. The TFOs were conjugated to psoralen at the 5'end and were designed to bind to a portion of the supF mutation reporter gene. Using in vitro gel mobility shift assays, we found that triplex formation by the c7X-substituted TFOs was relatively resistant to the presence of 140 mM K+. The c7X-containing TFOs were also superior in gene targeting experiments in mammalian cells, yielding 4- to 5-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third strand-directed psoralen adducts. When the phosphodiester backbone was replaced by a phosphorothioate one, the in vitro binding of the c7X-TFOs was not affected, but the efficiency of in vivo triple helix formation was reduced. These results indicate the utility of the c7X substitution for in vivo gene targeting experiments, and they show that the feasibility of the triplex anti-gene strategy can be significantly enhanced by advances in nucleotide chemistry.  相似文献   

2.
3.
We are developing triple helix forming oligonucleotides (TFOs) for gene targeting. Previously, we synthesized bioactive TFOs containing 2'-O-methylribose (2'-OMe) and 2'-O-aminoethylribose (2'-AE) residues. Active TFOs contained four contiguous 2'-AE residues and formed triplexes with high thermal stability and rapid association kinetics. In an effort to further improve bioactivity, we synthesized three series of TFOs containing the 2'-AE patch and additional ribose modifications distributed throughout the remainder of the oligonucleotide. These were either additional 2'-AE residues, the conformationally locked BNA/LNA ribose with a 2'-O,4'-C-methylene bridge, or the 2'-O,4'-C-ethylene analogue (ENA). The additionally modified TFOs formed triplexes with greater thermal stability than the reference TFO, and some had improved association kinetics. However, the most active TFOs in the biochemical and biophysical assays were the least active in the bioassay. We measured the thermal stability of triplexes formed by the TFOs in each series on duplex targets containing a change in sequence at a single position. The Tm value of the variant sequence triplexes increased as the number of all additional modifications increased. A simple explanation for the failure of the improved TFOs in the bioassay was that the increased affinity for nonspecific targets lowered the effective nuclear concentration. Enhancement of TFO bioactivity will require chemical modifications that improve interaction with the specific targets while retaining selectivity against mismatched sequences.  相似文献   

4.
A Debin  C Malvy    F Svinarchuk 《Nucleic acids research》1997,25(10):1965-1974
In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.  相似文献   

5.
A series of oligonucleotides conjugated to intercalators, as well as fluorescent and lipophilic substances, minor groove binders and photoactive molecules were synthesized for studies of their ability to form a stable triple helix. Purine-rich short double stranded DNA fragments from HIV-1 genome and pyrimidine 16-mer oligodeoxyribonucleotide were used as models. A conjugate of a dipyrido[3,2-a:2',3'-c]phenazine-ruthenium (II) complex and a triple helix-forming oligonucleotide was constructed. Upon sequence-specific duplex and triplex formation of the conjugate, the ruthenium complex becomes highly fluorescent. The attached ruthenium complex induces a stabilization of the DNA triple helix and a significant increase of the time of residence of the third strand on the duplex.  相似文献   

6.
7.
Biet E  Maurisse R  Dutreix M  Sun Js 《Biochemistry》2001,40(6):1779-1786
Oligonucleotide-directed triple helix formation provides an elegant rational basis for gene-specific DNA targeting and has been widely used to interfere with gene expression ("antigene" strategies) and as a molecular tool for biological studies. Various strategies have been developed to introduce sequence modifications in genomes. However, the low efficiency of the overall process in eucaryotic cells impairs efficient recovery of recombinant genomes. Since one limiting step in homologous recombination is the targeting to the homologous sequence, we have tested the contribution of an oligonucleotide-directed triple helix formation on the RecA-dependent association of an oligonucleotide and its homologous target on duplex DNA (D-loop formation). For this study, the recombinant ssDNA fragment was noncovalently associated to a triple helix-forming oligonucleotide. The physicochemical and biochemical characteristics of the triple helix and D-loop structures formed by the complex molecules in the presence or in the absence of RecA protein were determined. We have demonstrated that the triple helix-forming oligonucleotide increases the efficiency of D-loop formation and the RecA protein speeds up also the triple helix formation. The so-called "GOREC" (for guided homologous recombination) approach can be developed as a novel tool to improve the efficiency of directed mutagenesis and gene alteration in living organisms.  相似文献   

8.
A short route to pyrimidine locked nucleosides has been developed for their incorporation in triplex forming oligonucleotides (TFO). Compared to oligonucleotides built with standard nucleosides, the modified TFOs containing 3'-endo blocked residues formed, with their corresponding DNA duplexes, more stable triple helix systems, an effect which might be ascribed to the 3'-endo pucker of the modified nucleoside residues.  相似文献   

9.
A series of oligonucleotides conjugated to intercalators, as well as fluorescent and lipophilic substances, minor groove binders and photoactive molecules were synthesized for studies of their ability to form a stable triple helix. Purine-rich short double stranded DNA fragments from HIV-1 genome and pyrimidine 16-mer oligodeoxyribonucleotide were used as models. A conjugate of a dipyrido[3,2-a:2′,3′-c]phenazine-ruthenium (II) complex and a triple helix-forming oligonucleotide was constructed. Upon sequence-specific duplex and triplex formation of the conjugate, the ruthenium complex becomes highly fluorescent. The attached ruthenium complex induces a stabilization of the DNA triple helix and a significant increase of the time of residence of the third strand on the duplex.  相似文献   

10.
Triple helix forming oligonucleotides (TFOs) that bind chromosomal targets in living cells may become tools for genome manipulation, including gene knockout, conversion, or recombination. However, triplex formation by DNA third strands, particularly those in the pyrimidine motif, requires nonphysiological pH and Mg(2+) concentration, and this limits their development as gene-targeting reagents. Recent advances in oligonucleotide chemistry promise to solve these problems. For this study TFOs containing 2'-O-methoxy (2'-OMe) and 2'-O-(2-aminoethyl) (2'-AE) ribose substitutions in varying proportion have been constructed. The TFOs were linked to psoralen and designed to target and mutagenize a site in the hamster HPRT gene. T(m) analyses showed that triplexes formed by these TFOs were more stable than the underlying duplex, regardless of 2'-OMe/2'-AE ratio. However, TFOs with 2'-AE residues were more stable in physiological pH than those with only 2'-OMe sugars, as a simple function of 2'-AE content. In contrast, gene knockout assays revealed a threshold requirement--TFOs with three or four 2'-AE residues were at least 10-fold more active than the TFO with two 2'-AE residues. The HPRT knockout frequencies with the most active TFOs were 300-400-fold above the background, whereas there was no activity against the APRT gene, a monitor of nonspecific mutagenesis.  相似文献   

11.
12.
Oligonucleotides capable of sequence-specific triple helix formation have been proposed as DNA binding ligands useful for modulation of gene expression and for directed genome modification. However, the effectiveness of such triplex-forming oligonucleotides (TFOs) depends on their ability to bind to their target sites within cells, and this can be limited under physiologic conditions. In particular, triplex formation in the pyrimidine motif is favored by unphysiologically low pH and high magnesium concentrations. To address these limitations, a series of pyrimidine TFOs were tested for third-strand binding under a variety of conditions. Those containing 5-(1-propynyl)-2'-deoxyuridine (pdU) and 5-methyl-2'-deoxycytidine (5meC) showed superior binding characteristics at neutral pH and at low magnesium concentrations, as determined by gel mobility shift assays and thermal dissociation profiles. Over a range of Mg2+ concentrations, pdU-modified TFOs formed more stable triplexes than did TFOs containing 2'-deoxythymidine. At 1 mM Mg2+, a DeltaTm of 30 degreesC was observed for pdU- versus T-containing 15-mers (of generic sequence 5' TTTTCTTTTTTCTTTTCT 3') binding to the cognate A:T bp rich site, indicating that pdU-containing TFOs are capable of substantial binding even at physiologically low Mg2+ concentrations. In addition, the pdU-containing TFOs were superior in gene targeting experiments in mammalian cells, yielding 4-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third-strand-directed psoralen adducts. These results suggest the utility of the pdU substitution in the pyrimidine motif for triplex-based gene targeting experiments.  相似文献   

13.
Triplex-forming oligonucleotides (TFOs) are good candidates to be used as site-specific DNA-binding agents. Two obstacles encountered with TFOs are susceptibility to nuclease activity and a requirement for magnesium for triplex formation. Morpholino oligonucleotides were shown in one study to form triplexes in the absence of magnesium. In the current study, we have compared phosphodiester and morpholino oligonucleotides targeting a homopurine–homopyrimidine region in the human HER2/neu promoter. Using gel mobility shift analysis, our data demonstrate that triplex formation by phosphodiester oligonucleotides at the HER-2/neu promoter target is possible with pyrimidine-parallel, purine-antiparallel and mixed sequence (GT)-antiparallel motifs. Only the pyrimidine-parallel motif morpholino TFO was capable of efficient triple helix formation, which required low pH. Triplex formation with the morpholino TFO was efficient in low or no magnesium. The pyrimidine motif TFOs with either a phosphodiester or morpholino backbone were able to form triple helices in the presence of potassium ions, but required low pH. We have rationalized the experimental observations with detailed molecular modeling studies. These data demonstrate the potential for the development of TFOs based on the morpholino backbone modification and demonstrate that the pyrimidine motif is the preferred motif for triple helix formation by morpholino oligonucleotides.  相似文献   

14.
Sequence-specific recognition of DNA can be achieved by triple helix-forming oligonucleotides that bind to the major groove of double-helical DNA. These oligonucleotides have been used as sequence-specific DNA ligands for various purposes, including sequence-specific gene regulation in the so-called ‘antigene strategy’. In particular, (G,A)-containing oligonucleotides can form stable triple helices under physiological conditions. However, triplex formation may be in competition with self-association of these oligonucleotides. For biological applications it would be interesting to identify the conditions under which one structure is favoured as compared to the other(s). Here we have directly studied competition between formation of a parallel (G,A) homoduplex and that of a triple helix by a 13 nt (G,A)-containing oligonucleotide. Temperature gradient gel electrophoresis allows simultaneous detection of competition between the two structures, because of their different temperature dependencies and gel electrophoretic mobilities, and characterisation of this competition.  相似文献   

15.
A critical issue for the general application of triple-helix-forming oligonucleotides (TFOs) as modulators of gene expression is the dramatically reduced binding of short TFOs to targets that contain one or two pyrimidines within an otherwise homopurine sequence. Such targets are often found in gene regulatory regions, which represent desirable sites for triple helix formation. Using intercalator-conjugated AG motif TFOs, we compared the efficacy and base selectivity of 13 different bases or base surrogates in opposition to pyrimidines and purines substituted into selected positions within a paradigm 15-base polypurine target sequence. We found that substitutions closer to the intercalator end of the TFO (positions 4-6) had a more deleterious effect on the dissociation constant (K d) than those farther away (position 11). Opposite T residues at position 11, 3-nitropyrrole or cytosine in the TFO provided adequate binding avidity for useful triplex formation (K ds of 55 and 110 nM, respectively). However, 3-nitropyrrole was more base selective than cytosine, binding to T >/=4 times better than to A, G or C. None of the TFOs tested showed avid binding when C residues were in position 11, although the 3-nitropyrrole-containing TFO bound with a K d of 200 nM, significantly better than the other designs. Molecular modeling showed that the 3-nitropyrrole.T:A triad is isomorphous with the A.A:T triad, and suggests novel parameters for evaluating new base triad designs.  相似文献   

16.
Locked nucleic acid (LNA) is a conformationally constrained DNA analogue that exhibits exceptionally high affinity for complementary DNA and RNA strands. The deoxyribose sugar is modified by a 2'-O, 4'-C oxymethylene bridge, which projects into the minor groove. In addition to changing the distribution of functional groups in the groove and the overall helical geometry relative to unmodified DNA, the bridge likely alters the hydration of the groove. Each of these factors will impact the ability of small molecules, proteins and other nucleic acids to recognize LNA-containing hybrids. This report describes the ability of several DNA-intercalating ligands and one minor groove binder to recognize LNA-DNA and LNA-RNA hybrid duplexes. Using UV-vis, fluorescence and circular dichroism spectroscopies, we find that the minor groove binder as well as the intercalators exhibit significantly lower affinity for LNA-containing duplexes. The lone exception is the alkaloid ellipticine, which intercalates into LNA-DNA and LNA-RNA duplexes with affinities comparable to unmodified DNA-DNA and RNA-DNA duplexes.  相似文献   

17.
Conjugates obtained by linking the anthracycline intercalating chromophore to triple helix forming oligonucleotides (TFOs) have been used in a physicochemical study of the stability of triple helices with DNA sequences of pharmacological relevance. The intercalating moiety is represented by carminomycinone derivatives obtained upon O-demethylation and hydrolysis of the glycosidic linkage of daunomycin followed by the introduction of an alkylating residue at two different positions. Results of experiments with a polypurinic region present in the multidrug resistance (MDR) gene indicate that the stability of the triple helix is significantly enhanced by replacement of C's with (5-Me)C's in the TFO sequences tested. The stability is not changed when a 3'-TpT is present in place of a 3'-CpG at the presumed intercalation site of the anthraquinone chromophore. The same carminomycinone derivatives were used for the preparation of conjugates able to form triple helices with the polypurine tract (PPT) present in the human integrated genome of HIV-1 infected cells. Three different TFOs (T(4)(Me)CT(4)(Me)CC, C2; T(4)(Me)CT(4)(Me)CC(Me)CC(Me)CCT, C6; and T(4)(Me)CT(4)G(6), G6) were designed and linked to the anthraquinone moiety. These conjugates showed a significantly enhanced ability to bind the PPT region of HIV with respect to the nonconjugated TFOs.  相似文献   

18.
Site-specific labeling of covalently closed circular DNA was achieved by using triple helix-forming oligonucleotides 10, 11 and 27 nt in length. The sequences consisted exclusively of pyrimidines (C and T) with a reactive psoralen at the 5'-end and a biotin at the 3'-end. The probes were directed to different target sites on the plasmids pUC18 (2686 bp), pUC18/4A (2799 bp) and pUC1 8/4A-H 1 (2530 bp). After triple helix formation at acid pH the oligonucleotides were photocrosslinked to the target DNAs via the psoralen moiety, endowing the covalent adduct with unconditional stability, e.g. under conditions unfavorable for preservation of the triplex, such as neutral pH. Complex formation was monitored after polyacrylamide gel electrophoresis by streptavidin-alkaline phosphatase (SAP)-induced chemiluminescence. The yield of triple helix increased with the molar ratio of oligonucleotide to target and the length of the probe sequence (27mer > 11mer). The covalent adduct DNA were visualized by scanning force microscopy (SFM) using avidin or streptavidin as protein tags for the biotin group on the oligonucleotide probes. We discuss the versatility of triple helix DNA complexes for studying the conformation of superhelical DNA.  相似文献   

19.
Triplex-forming oligonucleotides (TFOs) are sequence-dependent DNA binders that may be useful for DNA targeting and detection. A sensitive and convenient method to monitor triplex formation by a TFO and its target DNA duplex is required for the application of TFO probes. Here we describe a novel design by which triplex formation can be monitored homogeneously without prelabeling the target duplex. The design uses a TFO probe tagged with a fluorophore that undergoes fluorescence resonance energy transfer with fluorescent dyes that intercalate into the target duplex. Through color compensation analysis, the specific emission of the TFO probe reveals the status of the triple helices. We used this method to show that triple helix formation with TFOs is magnesium dependent. We also demonstrated that the TFO probe can be used for detection of sequence variation in melting analysis and for DNA quantitation in real-time polymerase chain reaction.  相似文献   

20.
Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences by Watson–Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号