首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Using the patch-voltage-clamp method action of tetraethylammonium on the fast (30 pS) and slow K+ channels was investigated. The slow K+ channels were presented by two types: with whole (30 pS) and decreased (20 pS) conductance. In all cases tetraethylammonium decreased the current magnitude and modified the channel kinetic parameters. Apparent blocking constants determined from the current decreasing are as 8-50 and 4-12 mM for the slow K+ channels with whole and decreased conductance, respectively, and 0.05-0.08 mM--for the fast K+ channel. The potential dependency of the blocking constants correlates with that of the channel conductance. Probability of the channel open state for the slow K+ channels decreases, and that for the fast K+ channel increases under application of tetraethylammonium. It is concluded that there are two sites of tetraethylammonium binding: the first site is into the channel pore, and the second one--into the regulatory centre responsible for the channel kinetic behaviour. Blocking of general conductance of the slow channels is accompanied by proportional decrease of the channel substate conductances without change of their number and cooperatively. Block of the fast K+ channel occurs without change of the channel elementary conductance but with decrease of the number of the channel substates and reversible violation of the channel transition cooperativity. The data are discussed from the point of the hypothesis on the channel clustery organization.  相似文献   

2.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

3.
The temperature dependence of the properties of unitary currents in cultured rat ventricular myocytes has been studied. Currents flowing through an ATP-dependent K+ channel were recorded from inside-out patches with the bath temperature varied from 10 degrees to 30 degrees C. The channel conductance was 56 pS at room temperature (22 degrees C), and the amplitudes of unitary currents and the channel conductance exhibited a relatively weak (Q10 from 1.4 to 1.6) dependence on temperature. The temperature dependence of channel mean open times was biphasic with the low temperature (10-20 degrees C) range showing a relatively stronger temperature dependence (Q10 of 2.3) than the high temperature (20-30 degrees C) range (Q10 of 1.6). The activation energies for the two regions were determined from an Arrhenius plot with the activation energy, corresponding to the lower temperature range, near 16 kcal/mol. Thermodynamic analysis, using transition rate theory, indicated that the formation of a transition state prior to channel closure to be associated with a positive entropy component for the high Q10 region.  相似文献   

4.
The open-channel conductance properties of a voltage-gated channel from sarcoplasmic reticulum were studied in planar phospholipid membranes. The channel is ideally selective for K+ over Cl- and for K+ over Ca++. In symmetrical 1 M solutions, the single-channel conductance (in pmho) falls in the order: K+ (214) > NH4+ (157) > Rb+ (125) > Na+ (72) > La+ (8.1) > Cs+ (< 3). In neutral bilayers, the channel conductance saturates with ion activity according to a rectangular hyperbolic relation, with half-saturation activities of 54 mM for K+ and 34 mM for Na+. Under symmetrical salt conditions, the K+:Na+ channel conductance ratio increases with salt activity, but the permeability ratio, measured by single-channel bi-ionic potentials, is constant between 20 mM and 2.5 M salt; the permeability ratio is equal to the conductance ratio in the limit of low-salt concentration. The channel conductance varies < 5% in the voltage range -100 to +70 mV. The maximum conductance varies K+ and Na+ is only weakly temperature dependent (delta H++ = 4.6 and 5.3 kcal/mol, respectively), but that of Li+ varies strongly with temperature (delta H++ = 13 kcal/mol). The channel's K+ conductance is blocked asymmetrically by Cs+, and this block is competitive with K+. The results are consistent with an Eyring-type barriers as it permeates the channel. The data conform to Lüger's (1973. Biochem. Biophys. Acta. 311:423-441) predictions for a "pure" single-ion channel.  相似文献   

5.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

6.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

7.
Using the patch-voltage-clamp method on excised membrane fragments from molluscan neurones temperature dependences of kinetic parameters of the fast and slow K(+)-channels were investigated in the temperature range 1 to 40 degrees C. Temperature dependences of probability of the channel open state (P0) for the slow and fast K(+)-channels are, generally, opposite, that is P0 increases for the slow channel and decreases for the fast channel with temperature. Similar dependences characterize durations of single channel open intervals (tau 0) and burst durations (t(p)). Durations of interburst and interpulse intervals (respectively, t(i) and tau) decrease for the slow channel and increase, in contrast, for the fast channel with temperature. For the channels of both types temperature dependences of P0 (as for other parameters) are essentially nonmonotonous. There are two local extrema, at least: for the slow K(+)-channel-maximum at 15 degrees C (minimum for the fast channel) and minimum at 20-25 degrees C (maximum for the fast channel). In some cases the number of local extrema may be greater than two. Some similarity in the action of temperature and membrane potential on the kinetic parameters was observed. For the slow K(+)-channel P0, tau 0 and t p increase with temperature and membrane potential. For the fast channel these parameters decrease at the same conditions. Moreover, for the channels of both types temperature dependences of the kinetic parameters are slightly pronounced at the potentials where potential dependences of the parameters are least. As a whole, temperature measurements showed that there are, possibly, several points of structural transitions (similar to phase transitions) in the temperature range 0 to 40 degrees C. Primarily, the kinetic parameters are determined by these transitions.  相似文献   

8.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

9.
Slow currents through single sodium channels of the adult rat heart   总被引:18,自引:6,他引:12       下载免费PDF全文
The currents through single Na+ channels from the sarcolemma of ventricular cells dissociated from adult rat hearts were studied using the patch-clamp technique. All patches had several Na+ channels; most had 5-10, while some had up to 50 channels. At 10 degrees C, the conductance of the channel was 9.8 pS. The mean current for sets of many identical pulses inactivated exponentially with a time constant of 1.7 +/- 0.6 ms at -40 mV. Careful examination of the mean currents revealed a small, slow component of inactivation at pulse potentials ranging from -60 to -30 mV. The time constant of the slow component was between 8 and 14 ms. The channels that caused the slow component had the same conductance and reversal potential as the fast Na+ currents and were blocked by tetrodotoxin. The slow currents appear to have been caused by repeated openings of one or more channels. The holding potential influenced the frequency with which such channel reopening occurred. The slow component was prominent during pulses from a holding potential of -100 mV, while it was very small during pulses from -140 mV. Ultraslow currents through the Na+ channel were observed occasionally in patches that had large numbers of channels. They consisted of bursts of 10 or more sequential openings of a single channel and lasted for up to 150 ms. We conclude that the single channel data cannot be explained by standard models, even those that have two inactivated states or two open states of the channel. Our results suggest that Na+ channels can function in several different "modes," each with a different inactivation rate.  相似文献   

10.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

11.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

12.
The mechanism underlying temperature-dependent shortening of action potential (AP) duration was examined in the fish (Carassius carassius L.) heart ventricle. Acute temperature change from +5 to +18 degrees C (heat stress) shortened AP duration from 2.8 +/- 0.3 to 1.3 +/- 0.1 s in intact ventricles. In 56% (18 of 32) of enzymatically isolated myocytes, heat stress also induced reversible opening of ATP-sensitive K+ channels and increased their single-channel conductance from 37 +/- 12 pS at +8 degrees C to 51 +/- 13 pS at +18 degrees C (Q10 = 1.38) (P < 0.01; n = 12). The ATP-sensitive K+ channels of the crucian carp ventricle were characterized by very low affinity to ATP both at +8 degrees C [concentration of Tris-ATP that produces half-maximal inhibition of the channel (K1/2)= 1.35 mM] and +18 degrees C (K1/2 = 1.85 mM). Although acute heat stress induced ATP-sensitive K+ current (IK,ATP) in patch-clamped myocytes, similar heat stress did not cause any glibenclamide (10 microM)-sensitive changes in AP duration in multicellular ventricular preparations. Examination of APs and K+ currents from the same myocytes by alternate recording under current-clamp and voltage-clamp modes revealed that changes in AP duration were closely correlated with temperature-specific changes in the voltage-dependent rectification of the background inward rectifier K+ current IK1. In approximately 15% of myocytes (4 out of 27), IK,ATP-dependent shortening of AP followed the IK1-induced AP shortening. Thus heat stress-induced shortening of AP duration in crucian carp ventricle is primarily dependent on IK1. IK,ATP is induced only in response to prolonged temperature elevation or perhaps in the presence of additional stressors.  相似文献   

13.
A patch-clamp study of histamine-secreting cells   总被引:9,自引:2,他引:7       下载免费PDF全文
The ionic conductances in rat basophilic leukemia cells (RBL-2H3) and rat peritoneal mast cells were investigated using the patch-clamp technique. These two cell types were found to have different electrophysiological properties in the resting state. The only significant conductance of RBL-2H3 cells was a K+-selective inward rectifier. The single channel conductance at room temperature increased from 2-3 pS at 2.8 mM external K+ to 26 pS at 130 mM K+. This conductance, which appeared to determine the resting potential, could be blocked by Na+ and Ba2+ in a voltage-dependent manner. Rat peritoneal mast cells had a whole-cell conductance of only 10-30 pS, and the resting potential was close to zero. Sometimes discrete openings of channels were observed in the whole-cell configuration. When the Ca2+ concentration on the cytoplasmic side of the membrane was elevated, two types of channels with poor ion specificity appeared. A cation channel, observed at a Ca2+ concentration of approximately 1 microM, had a unit conductance of 30 pS. The other channel, activated at several hundred micromolar Ca2+, was anion selective and had a unit conductance of approximately 380 pS in normal Ringer solution and a bell-shaped voltage dependence. Antigenic stimulation did not cause significant changes in the ionic conductances in either cell type, which suggests that these cells use a mechanism different from ionic currents in stimulus-secretion coupling.  相似文献   

14.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

15.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

16.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

17.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

18.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

19.
The patch-clamp technique was used to characterize channels that could contribute to the resting Cl-conductance in the surface membrane of cultured rat skeletal muscle. Two Cl- -selective channels, in addition to the Cl- -selective channel of large conductance described previously (Blatz and Magleby, 1983), were observed. One of these channels had fast kinetics and a conductance of 45 +/- 1.8 pS (SE) in symmetrical 100 mM KCl. The other had slow kinetics and a conductance of 61 +/- 2.4 pS. The channel with fast kinetics typically closed within 1 ms after opening and flickered between the open and shut states. The channel with slow kinetics typically closed within 10 ms after opening and displayed less flickering. Both channels were active in excised patches of membrane held at potentials similar to resting membrane potentials in intact cells, and both were open a greater percentage of time with depolarization. Under conditions of high ion concentrations, both channels exhibited nonideal selectivity for Cl- over K+ with the permeability ratio PK/PCl of 0.15-0.2. Additional experiments on the fast Cl- channel indicated that its activity decreased with lowered pHi and that SO2-4 and CH3SO-4 were ineffective charge carriers. These findings, plus the observation that the fast Cl- channel was also active in membrane patches on intact cells, suggest that the fast Cl- channel provides a molecular basis for at least some of the resting Cl- conductance. The extent to which the slow Cl- channel contributes is less clear as it was typically active only after excised patches of membrane had been exposed to high concentrations of KCl at the inner membrane surface.  相似文献   

20.
The currents through single Ca2+-activated K+ channels were studied in excised inside-out membrane patches of human erythrocytes. The effects of temperature on single-channel conductance, on channel gating and on activation by Ca2+ were investigated in the temperature range from 0 up to 47 degrees C. The single-channel conductance shows a continuous increase with increasing temperature; an Arrhenius plot of the conductance gives the activation energy of 29.6 +/- 0.4 kJ/mol. Reducing the temperature alters channel-gating kinetics which results in a significant increase of the probability of the channel being open (Po). The calcium dependence of Po is affected by temperature in different ways; the threshold concentration for activation by Ca2+ is not changed, the Ca2+ concentration of half-maximal channel activation is reduced from 2.1 mumol/l at 20 degrees C to 0.3 mumol/l at 0 degrees C, the saturation level of the dependence is reduced for temperatures higher then about 30 degrees C. The relevance of the obtained data for the interpretation of the results known from flux experiments on cells in suspensions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号