首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant‐associated bacteria can have beneficial effects on the growth and health of their host. Nevertheless, the role of endophytic bacteria present in seeds has not been investigated in depth. In this study, the cultivable endophytic population of seeds from Arabidopsis thaliana exposed to 2 μm cadmium for several generations (Cd seeds) was compared with a population isolated from seeds of plants that were never exposed to Cd (control seeds). We observed obvious differences between the two types of seed concerning genera present and phenotypic characteristics of the different isolates. Sinorhizobium sp. and Micrococcus sp. were only found in control seeds, while Pseudomonas sp., Bosea sp. and Paenibacillus sp. were only found in Cd seeds. Sphingomonas sp., Rhizobium sp., Acidovorax sp., Variovorax sp., Methylobacterium sp., Bacillus sp. and Staphylococcus sp. occurred in varying numbers in both types of seed. Metal tolerance and 1‐aminocyclopropane‐1‐carboxylate deaminase activity were predominantly found in strains isolated from Cd seeds, while the production of siderophores, indole‐3‐acetic acid and organic acids was more prevalent in endophytes isolated from control seeds. These data support the hypothesis that certain endophytes are selected for transfer to the next generation and that their presence might be important for subsequent germination and early seedling development.  相似文献   

2.
Although endophytic bacteria seem to have a close association with their host plant, little is known about the influence of seed endophytic bacteria on initial plant development and on their interactions with plants under conditions of metal toxicity. In order to further elucidate this close relationship, we isolated endophytic bacteria from surface sterilized Nicotiana tabacum seeds that were collected from plants cultivated on a cadmium-(Cd) and zinc-enriched soil. Many of the isolated strains showed Cd tolerance. Sterilely grown tobacco plants were inoculated with either the endogenous microbial consortium, composed of cultivable and noncultivable strains; single strains; or defined consortia of the most representative cultivable strains. Subsequently, the effects of inoculation of endophytic bacteria on plant development and on metal and nutrient uptake were explored under conditions with and without exposure to Cd. In general, seed endophytes were found to have a positive effect on plant growth, as was illustrated by an increase in biomass production under conditions without Cd. In several cases, inoculation with endophytes resulted in improved biomass production under conditions of Cd stress, as well as in a higher plant Cd concentration and total plant Cd content compared to noninoculated plants. These results demonstrate the beneficial effects of seed endophytes on metal toxicity and accumulation, and suggest practical applications using inoculated seeds as a vector for plant beneficial bacteria.  相似文献   

3.
We examined whether long-term Cd exposure leads to beneficial changes in the cultivable endophytic bacteria present in the seeds of Agrostis capillaris. Therefore the cultivable seed endophytes of Agrostis capillaris growing on a long-term Cd/Ni-contaminated plot (Cd/Ni seeds) were compared with those originating from a non-contaminated plot (control seeds). We observed plant- and contaminant-dependent effects on the population composition between control and Cd/Ni seeds. Also differences in phenotypic characteristics were found: endophytes from Cd/Ni seeds exhibited more ACC deaminase activity and production of siderophores and IAA, while endophytes from control seeds, very surprisingly, showed more metal tolerance.

Finally, the 3 most promising seed endophytes were selected based on their metal tolerance and plant growth promoting potential, and inoculated in Agrostis capillaris seedlings. In case of non-exposed plants, inoculation resulted in a significantly improved plant growth; after inoculation of Cd-exposed plants an increased Cd uptake was achieved without affecting plant growth. This indicates that inoculation of Agrostis with its seed endophytes might be beneficial for its establishment during phytoextraction and phytostabilisation of Cd-contaminated soils.  相似文献   

4.
In order to stimulate selection for plant‐associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal‐contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant‐associated bacteria that could then be inoculated in Cd‐exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole‐3‐acetic acid (IAA) and aminocyclopropane‐1‐carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore‐ and ACC deaminase‐producing, highly Cd‐resistant Rhizobium sp. from the rhizosphere, a siderophore‐, organic acid‐, IAA‐ and ACC deaminase‐producing highly Cd‐resistant Pseudomonas sp. colonising the roots, a highly Cd‐ and Zn‐resistant organic acid and IAA‐producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non‐exposed and Cd‐exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.  相似文献   

5.
Dynamics of seed-borne rice endophytes on early plant growth stages   总被引:2,自引:0,他引:2  
Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.  相似文献   

6.
Plants that grow and thrive under abiotic stress often do so with the help of endophytic microorganisms. Although nitrogen‐fixing (diazotrophic) endophytes colonize many wild plants, these natural relationships may be disrupted in cultivated crop species where breeding and genotype selection often occur under conditions of intensive fertilization and irrigation. Many energy crops including corn may still benefit from diazotrophic endophyte inoculations allowing for more efficient biomass production with less input of petroleum‐derived fertilizer. A selection of diazotrophic endophytes isolated from willow (Salix sitchensis, Sitka willow) and poplar (Populus trichocarpa, black cottonwood) growing in nutrient‐poor river sides were used as inoculum in three experiments testing the effect on plant growth and leaf level physiology of a sweet corn variety under various levels of applied nitrogen fertilizer. We report substantial growth promotion with improved leaf physiology of corn plants in response to diazotrophic endophyte inoculations. Significant gains of early biomass with a greater root : shoot ratio were found for plants receiving endophytic inocula over the uninoculated control groups regardless of the nitrogen level. Furthermore, inoculated plants exhibited consistently higher rates of net CO2 assimilation than did those without endophytic inoculation. These results have beneficial implications for enhanced plant growth in a low‐input system on nutrient‐poor sites. The immediate increase of root mass observed in endophyte inoculated plants has the potential to provide better establishment and early growth in resource‐limited environments. The initial results of this study also indicate that the beneficial effect from endophytes isolated from poplar and willow species is not restricted to the species from which they were initially isolated.  相似文献   

7.
To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air‐borne spores (termed “horizontal transmission”). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra, Papaver rhoeas, Plantago lanceolata, Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field‐grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far‐reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans‐generational resistance in plants.  相似文献   

8.
Endophytic bacteria can colonize various plants and organs. However, endophytes colonizing plant reproductive organs have been rarely analyzed. In this study, endophytes colonizing flowers as well as berries and seeds of grapevine plants grown under natural conditions were investigated by cultivation as well as by fluorescence in situ hybridization. For comparison, bacteria were additionally isolated from other plant parts and the rhizosphere and characterized. Flowers, fruits, and seeds hosted various endophytic bacteria. Some taxa were specifically isolated from plant reproductive organs, whereas others were also detected in the rhizosphere, endorhiza or grape inflo/infructescence stalk at the flowering or berry harvest stage. Microscopic analysis by fluorescence in situ hybridization of resin-embedded samples confirmed the presence of the isolated taxa in plant reproductive organs and enabled us to localize them within the plant. Gammaproteobacteria (including Pseudomonas spp.) and Firmicutes (including Bacillus spp.) were visualized inside the epidermis and xylem of ovary and/or inside flower ovules. Firmicutes, mainly Bacillus spp. were additionally visualized inside berries, in the intercellular spaces of pulp cells and/or xylem of pulp, but also along some cell walls inside parts of seeds. Analysis of cultivable bacteria as well as microscopic results indicated that certain endophytic bacteria can colonize flowers, berries, or seeds. Our results also indicated that some specific taxa may not only derive from the root environment but also from other sources such as the anthosphere.  相似文献   

9.
  • Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth‐promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth.
  • The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth‐promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm ).
  • Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito‐C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole‐3‐acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress.
  • In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.
  相似文献   

10.
Endophytic fungi are thought to interact mutualistically with host plants by producing alkaloid metabolites that deter herbivory. Since such fungi are transmitted via seed in some grasses, the presence of endophytes may also protect plants from seed predators. We conducted seed choice experiments for two dominant seed harvesting ants, Pogonomyrmex rugosus in the Sonoran desert and Pogonomyrmex occidentalis at a higher elevation, riparian zone in Arizona, USA. Non-infected fescue (Festuca arundinacea) seeds and seeds infected with the endophytic fungus, Acremonium coenophialum, were presented to ant colonies in three different populations. Infected seeds were harvested less frequently than non-infected seed for the two populations of Pogonomyrmex rugosus but not for the population of Pogonomyrmex occidentalis. We also a conducted seed dispersal experiment for one population of Pogonomyrmex rugosus. Of the seeds that were harvested, most of the colonies discarded more infected seeds into refuse piles than expected by chance. Seeds discarded into refuse piles have greater germination success than surrounding areas. The most important interaction of endophytes and grasses may be deterrence of seed predation and enhancing the probability of germinating in favorable sites, since these processes directly increase plant fitness.  相似文献   

11.
The importance of the plant microbiome for host fitness has led to the concept of the “plant holobiont”. Seeds are reservoirs and vectors for beneficial microbes, which are very intimate partners of higher plants with the potential to connect plant generations. In this study, the endophytic seed microbiota of numerous barley samples, representing different cultivars, geographical sites and harvest years, was investigated. Cultivation-dependent and -independent analyses, microscopy, functional plate assays, greenhouse assays and functional prediction were used, with the aim of assessing the composition, stability and function of the barley seed endophytic bacterial microbiota. Associations were consistently detected in the seed endosphere with Paenibacillus, Pantoea and Pseudomonas spp., which were able to colonize the root with a notable rhizocompetence after seed germination. In greenhouse assays, enrichment with these bacteria promoted barley growth, improved mineral nutrition and induced resistance against the fungal pathogen Blumeria graminis. We demonstrated here that barley, an important crop plant, was consistently associated with beneficial bacteria inside the seeds. The results have relevant implications for plant microbiome ecology and for the holobiont concept, as well as opening up new possibilities for research and application of seed endophytes as bioinoculants in sustainable agriculture.  相似文献   

12.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

13.
Rock-degrading endophytic bacteria in cacti   总被引:1,自引:1,他引:0  
A plant–bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2, produce volatile and non-volatile organic acids, and reduce rock particle size to form mineral soil. This study revealed the presence of large populations of culturable endophytic bacteria inside the seeds extracted from wild plants, from seeds extracted from the guano of bats feeding on cactus fruit, in seedlings growing from these seeds, in the pulp of fruit, and in small, mature wild plants, and are comparable in size to populations of endophytic populations in some agricultural crops. The dominant culturable endophytes were isolates of the genera Bacillus spp., Klebsiella spp., Staphylococcus spp., and Pseudomonas spp. Based on partial sequencing of the 16s rRNA gene, the isolated strains had low similarity to known strains in these genera. However, these strains have higher molecular similarity among endophytes obtained from seeds, endophytes from roots, and some bacterial strains from the rhizoplane. Seedlings developed from seeds with endophytes contain the similar species of endophytes in their shoots, possibly derived from the seeds. This study shows the involvement of endophytic bacteria in rock weathering by cacti in a hot, subtropical desert and their possible contribution to primary colonization of barren rock. This study proposes that cacti capable of acquiring diverse populations of endophytes may give them an evolutionary advantage to gain a foothold on highly uncompromising terrain.  相似文献   

14.
种子内生菌增强宿主植物重金属抗性的功能机制研究进展   总被引:1,自引:0,他引:1  
种子是植物的繁殖器官,其内定殖有一定数量的内生菌,种子内生菌通过垂直传播成为新生植物组织内最早定殖的微生物,对连续几代植物内生菌群落的形成起着决定性作用,并在植物抗逆方面发挥着重要作用。本文对种子内生菌与宿主植物重金属抗性之间的关系及其功能机制进行综述,并对下一步研究方向予以展望。  相似文献   

15.
沙月霞 《微生物学报》2018,58(12):2216-2228
[目的]为详细了解水稻不同组织内生细菌群落多样性。[方法]对宁粳43号内生细菌的总DNA提取后,采用高通量测序技术对水稻内生细菌的16S rRNA基因进行了序列测定,分析了水稻不同组织部位内生细菌群落结构特征。[结果]叶部共获得内生细菌OTUs 610个,茎部411个,根部174个。物种分类显示,叶部内生细菌种类隶属于22门40纲103目198科399属,其中优势类群是红球菌属(Rhodococcus)和乳酸杆菌属(Lactobacillus),它们的相对丰度分别为21.00%和9.19%;茎部内生细菌种类隶属于19门31纲85目169科306属,其中优势类群是红球菌属和罗尔斯通菌属(Ralstonia),它们的相对丰度分别为19.25%和13.52%;根部内生细菌种类隶属于9门19纲44目82科140属,其中优势类群是肠杆菌属(Enterobacter)和埃希氏杆菌属(Escherichia),它们的相对丰度分别为81.13%和10.89%。根茎叶中相同的OTU有78个,放线菌门(Actinobacteria)与大多数细菌具有相关性。根系内生细菌中具有调控各种代谢网络功能的物种丰度高于茎部和叶部。[结论]不同水稻组织内生细菌具有丰富的群落多样性,其中叶部的内生细菌物种最丰富,根系参与各种代谢调控的细菌丰度最高,各个组织部位的优势菌属各不相同,变形菌门是最重要的水稻内生细菌。  相似文献   

16.
Post‐dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient‐rich over nutrient‐poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants.  相似文献   

17.
Coexistence of species with different seed sizes is a long‐standing issue in community ecology, and a trade‐off between fecundity and stress tolerance has been proposed to explain co‐occurrence in heterogeneous environments. Here we tested an intraspecific extension of this model: whether such trade‐off also explains seed trait variation among populations of widespread plants under stress gradients. We collected seeds from 14 populations of Plantago coronopus along the Atlantic coast in North Africa and Europe. This herb presents seed dimorphism, producing large basal seeds with a mucilaginous coat that facilitates water absorption (more stress tolerant), and small apical seeds without coats (less stress tolerant). We analysed variation among populations in number, size and mucilage production of basal and apical seeds, and searched for relationships between local environment and plant size. Populations under higher stress (higher temperature, lower precipitation, lower soil organic matter) had fewer seeds per fruit, higher predominance of basal relative to apical seeds, and larger basal seeds with thicker mucilaginous coats. These results strongly suggest a trade‐off between tolerance and fecundity at the fruit level underpins variation in seed traits among P. coronopus populations. However, seed production per plant showed the opposite pattern to seed production per fruit, and seemed related to plant size and other life‐cycle components, as an additional strategy to cope with environmental variation across the range. The tolerance–fecundity model may constitute, under stress gradients, a broader ecological framework to explain trait variation than the classical seed size–number compromise, although several fecundity levels and traits should be considered to understand the diverse strategies of widespread plants to maximise fitness in each set of local conditions.  相似文献   

18.
Poly‐3‐hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed‐specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N‐terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight‐averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed‐based platform for PHB production.  相似文献   

19.
Communities of post‐dispersal granivores can shape the density and dispersion of exotic plants and invasive weeds, yet plant ecologists have a limited perception of the relative trophic linkages between a seed species and members of its granivore community. Dandelion seeds marked with Rabbit IgG were disseminated into replicated plots in the recipient habitat (South Dakota) and the native range (Czech Republic). Arthropods were collected in pitfall traps, and their guts were searched for the protein marker using enzyme‐linked immunosorbent assay (ELISA). Seed dishes were placed in each plot, and dandelion seed removal rates were measured. The entire experiment was repeated five times over the dandelion flowering period. Gut analysis revealed that approximately 22% of specimens tested positive for the seed marker. A more diverse granivore community had trophic linkages to seeds than has been previously realized under field conditions. This community included taxa such as isopods, millipedes, weevils, rove beetles, and caterpillars, in addition to the traditionally recognized ants, crickets, and carabid beetles. Rarefaction and Chao analysis estimated approximately 16 and 27 species in the granivore communities of the Czech Republic and South Dakota, respectively. Synthesis: Generalist granivore communities are diverse and polyphagous, and are clearly important as a form of biotic resistance to invasive and weedy plants. These granivore communities can be managed to limit population growth of these pests.  相似文献   

20.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号