首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We surveyed nucleotide diversity at two candidate genes LeNCED1 and pLC30‐15, involved in an ABA (abscisic acid) signalling pathway, in two closely related tomato species Solanum peruvianum and Solanum chilense. Our six population samples (three for each species) cover a range of mesic to very dry habitats. The ABA pathway plays an important role in the plants’ response to drought stress. LeNCED1 is an upstream gene involved in ABA biosynthesis, and pLC30‐15 is a dehydrin gene positioned downstream in the pathway. The two genes show very different patterns of nucleotide variation. LeNCED1 exhibits very low nucleotide diversity relative to the eight neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, pLC30‐15 exhibits higher levels of nucleotide diversity and, in particular in S. chilense, higher genetic differentiation between populations than the reference loci, which is indicative of local adaptation. In the more drought‐tolerant species S. chilense, one population (from Quicacha) shows a significant haplotype structure, which appears to be the result of positive (diversifying) selection.  相似文献   

2.
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water‐use efficiency through modifications in both stomatal (gs) and mesophyll conductances (gm). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (Sc). In addition, the lower gm/Sc ratio for a given porosity in drought‐acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought‐associated changes in the morphological properties of stomata, in an accession and treatment‐dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.  相似文献   

3.
  • Climate models predict a further drying of the Mediterranean summer. One way for plant species to persist during such climate changes is through acclimation. Here, we determine the extent to which trait plasticity in response to drought differs between species and between sites, and address the question whether there is a trade‐off between drought survival and phenotypic plasticity.
  • Throughout the summer we measured physiological traits (photosynthesis – Amax, stomatal conductance – gs, transpiration – E, leaf water potential – ψl) and structural traits (specific leaf area – SLA, leaf density – LD, leaf dry matter content – LDMC, leaf relative water content – LRWC) of leaves of eight woody species in two sites with slightly different microclimate (north‐ versus south‐facing slopes) in southern Spain. Plant recovery and survival was estimated after the summer drought period.
  • We found high trait variability between species. In most variables, phenotypic plasticity was lower in the drier site. Phenotypic plasticity of SLA and LDMC correlated negatively with drought survival, which suggests a trade‐off between them. On the other hand, high phenotypic plasticity of SLA and LDMC was positively related to traits associated with rapid recovery and growth after the drought period.
  • Although phenotypic plasticity is generally seen as favourable during stress conditions, here it seemed beneficial for favourable conditions. We propose that in environments with fluctuating drought periods there can be a trade‐off between drought survival and growth during favourable conditions. When climate become drier, species with high drought survival but low phenotypic plasticity might be selected for.
  相似文献   

4.
Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.  相似文献   

5.
Veneklaas  Erik J.  Poot  Pieter 《Plant and Soil》2003,257(2):295-304
Woodlands in south-western Australia are evergreen and transpire throughout the year despite the long, hot and dry summers of the Mediterranean climate. Results from a case study in a species-rich Banksia woodland are used to discuss the ecological and physiological properties that appear to be essential features of this and similar communities. Tree, shrub and perennial herbaceous species with long-lived leaves dominate the community, whereas winter-green herbaceous species with short-lived leaves constitute a minor group. The total leaf area index is therefore reasonably constant in all seasons. Leaf area index is low and canopies are open, causing good coupling between the vegetation and the atmosphere, and making stomatal control an effective regulator of transpiration. Mean maximum (winter) stomatal conductances were high at approximately 300 mmol m–2 s–1. Deep-rootedness allows the dominant species to access soil moisture throughout the unsaturated zone, and down to the capillary fringe of the saturated zone. Shrubs and herbs with shallow roots experience greater drought stress during summer. Rates of community evapotranspiration are limited by leaf area index in the wet season, and further reduced by stomatal closure in the dry season. Deep-rooted plants appear to decrease their stomatal conductance before the development of severe drought stress. Such conservative behaviour, possibly related to plant hydraulic constraints, is a contributing factor to the limited seasonality in community water use.  相似文献   

6.
Freshwater wetlands often exist as transitional areas between terrestrial uplands and deep open water. Thus they are fundamentally sensitive to changes in hydrology. Some of the more dramatic changes in wetland water supply occur during extensive droughts, where both precipitation and soil water table markedly decline. While it is generally understood that herbaceous wetland macrophytes are more sensitive to decreased water availability than wetland trees, the degree of susceptibility among wetland herbs remains relatively unexplored. Therefore, the purpose of this study was to evaluate plant growth responses of five herbaceous wetland species (monocots Carex alata, Juncus effusus, and Peltandra virginica, and dicots Saururus cernuus, and Justicia americana) to simulated drought conditions (up to 6 weeks in a 1-in-25-year precipitation low with receding soil water tables). Of the five species studied, three (J. americana, S. cernuus, and J. effusus) had no survivors after 6 weeks of simulated drought. J. americana, appeared to be the most sensitive to water deprivation with a 67% decrease in plant phytomass and an 85% decrease in leaf area with only 2 weeks of drought, and complete mortality after 3 weeks. While P. virginica also had significant decreases in biomass, leaf area, relative growth rate (RGR) and unit leaf rate (ULR), in as little as 2 weeks of drought, no noticeable decreases in survival were observed. In contrast, when J. effusus experienced between 2- and 4-weeks of water deprivation, there were significant increases in RGR, ULR, phytomass, leaf area, and shoot:root ratios. S. cernuus and C. alata remained relatively unaffected following 4 weeks of drought; however by the fifth week, there were significant declines in leaf area for both species. In general, this study provides experimental evidence on how herbaceous macrophytes grow under drought conditions. This basic understanding is fundamental if we are to develop better working models on how wetlands will respond to changing environmental conditions that lead to decreased water supply.  相似文献   

7.
Quantitative trait loci (QTLs) for yield and drought related physiological traits, osmotic potential (OP), carbon isotope ratio (δ13C, an indicator of water use efficiency), and leaf chlorophyll content (Chl), were exchanged via marker-assisted selection (MAS) between elite cultivars of the two cotton species Gossypium barbadense cv. F-177 and G. hirsutum cv. Siv’on. The resulting near isogenic lines (NILs) were examined in two field trials, each with two irrigation regimes, in order to (1) evaluate the potential to improve cotton drought resistance by MAS and (2) test the role of physiological traits in plant productivity. NILs introgressed with QTLs for high yield rarely exhibited an advantage in yield relative to the recipient parent, whereas a considerable number of NILs exhibited the expected phenotype in terms of lower OP (5 out of 9), higher δ13C (4 out of 6) or high Chl (2 out of 3). Several NILs exhibited considerable modifications in non-targeted traits including leaf morphology, stomatal conductance and specific leaf weight (SLW). In G. barbadense genotypes, yield was correlated negatively with δ13C and OP and positively with stomatal conductance, SLW and Chl, whereas in G. hirsutum yield was negatively correlated with δ13C, SLW and Chl. This dissimilarity suggests that each of the respective species has evolved different mechanisms underlying plant productivity. We conclude that the improvement of drought related traits in cotton NILs may lead to improved drought resistance via MAS, but that conventional breeding may be necessary to combine the introduced QTL(s) with high yield potential.  相似文献   

8.
Flowers are the defining feature of angiosperms, and function as indispensable organs for sexual reproduction. Flower colour typically plays an important role in attracting pollinators, and can show considerable variation, even between closely related species. For example, domesticated tomato (S. lycopersicum) has orange/yellow flowers, while the wild relative S. chilense (accession LA2405) has bright yellow flowers. In this study, the mechanism of flower colour formation in these two species was compared by evaluating the accumulation of carotenoids, assessing the expression genes related to carotenoid biosynthetic pathways and observing chromoplast ultrastructure. In S. chilense petals, genes associated with the lutein branch of the carotenoid biosynthetic pathway, phytoene desaturase (PDS), ζ‐carotene desaturase (ZDS), lycopene β‐cyclase (LCY‐B), β‐ring hydroxylase (CRTR‐B) and ε‐ring hydroxylase (CRTR‐E), were highly expressed, and this was correlated with high levels of lutein accumulation. In contrast, PDS, ZDS and CYC‐B from the neoxanthin biosynthetic branch were highly expressed in S. lycopersicum anthers, leading to increased β‐carotene accumulation and hence an orange/yellow colour. Changes in the size, amount and electron density of plastoglobules in chromoplasts provided further evidence of carotenoid accumulation and flower colour formation. Taken together, these results reveal the biochemical basis of differences in carotenoid pigment accumulation and colour between petals and anthers in tomato.  相似文献   

9.
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (P N), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored P N and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F′v/F′m) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress.  相似文献   

10.
This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt‐resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt‐treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.  相似文献   

11.
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.  相似文献   

12.
Carbon isotope discrimination (Δ) was measured in irrigated and droughted potato. Under irrigation, Δ in leaflets at given nodes increased (P < 0.001) between 21 and 63 d after emergence (DAE), which was attributed to increasing stomatal conductance (gs) during leaf expansion. The effect of leaf position on Δ was non-significant in mature leaves. Under drought, Δ decreased (P < 0.001) in successive leaves up the stem, reflecting changes in gs and water stress. At each node Δ remained constant or decreased, suggesting that effects of water stress were greater than changes with leaf expansion. There were significant differences in Δ between cultivars in both treatments, and in the progressive decrease in Δ up the stem under drought. Differences in Δ between cultivars were consistent with differences in stomatal control of leaf water status following water stress. Values for Δ in tubers were consistently lower than in stem and leaf, and decreased more rapidly. Differences in Δ between cultivars did not reflect dry matter production in either treatment, and differences in water use were non-significant between cultivars under drought. So, plants can achieve similar dry matter production through different growth strategies when irrigated or droughted, and Δ does not provide a simple, indirect method of selecting for dry matter production under water stress.  相似文献   

13.
Natural selection on photosynthetic performance is a primary factor determining leaf phenotypes. The complex CO2 diffusion path from substomatal cavities to the chloroplasts – the mesophyll conductance (gm) – limits photosynthetic rate in many species and hence shapes variation in leaf morphology and anatomy. Among sclerophyllous and succulent taxa, structural investment in leaves, measured as the leaf dry mass per area (LMA), has been implicated in decreased gm. However, in herbaceous taxa with high gm, it is less certain how LMA impacts CO2 diffusion and whether it significantly affects photosynthetic performance. We addressed these questions in the context of understanding the ecophysiological significance of leaf trait variation in wild tomatoes, a closely related group of herbaceous perennials. Although gm was high in wild tomatoes, variation in gm significantly affected photosynthesis. Even in these tender‐leaved herbaceous species, greater LMA led to reduced gm. This relationship between gm and LMA is partially mediated by cell packing and leaf thickness, although amphistomy (equal distribution of stomata on both sides of the leaf) mitigates the effect of leaf thickness. Understanding the costs of increased LMA will inform future work on the adaptive significance of leaf trait variation across ecological gradients in wild tomatoes and other systems.  相似文献   

14.
While information about a species’ demography is interesting in its own right, it is an absolute necessity for certain types of population genetic analyses. The most widely used methods to infer a species’ demographic history do not take intralocus recombination or recent divergence into account, and some methods take several weeks to converge. Here, we present Jaatha, a new composite‐likelihood method that does incorporate recent divergence and is also applicable when intralocus recombination rates are high. This new method estimates four demographic parameters. The accuracy of Jaatha is comparable to that of other currently available methods, although it is superior under certain conditions, especially when divergence is very recent. As a proof of concept, we apply this new method to estimate demographic parameters for two closely related wild tomato species, Solanum chilense and S. peruvianum. Our results indicate that these species likely diverged 1.44·N generations ago, where N is the effective population size of S. chilense, and that some introgression between these species continued after the divergence process initiated. Furthermore, S. peruvianum likely experienced a population expansion following speciation.  相似文献   

15.
To determine the tolerance of Salix gracilistyla to repetitive alternate flooding and drought, we measured leaf stomatal conductance, pre-dawn water potential, osmotic adjustment, and biomass production under greenhouse conditions. We used a control and nine crossed treatments (F1-D1–F3-D3) in which we combined 1-, 2-, or 3-week floodings (F) and droughts (D). Leaf stomatal conductance was lowest in 3 weeks of flooding or drought when the preceding event (flood or drought) was also of a 3-week duration. Leaf pre-dawn water potential was reduced in 3 weeks of drought when preceded by 2 or 3 weeks of flooding. Cuttings had slight osmotic adjustments in repetitions of long floodings and droughts. During longer durations of drought in crossed experiments, plants had low root and shoot mass, few hypertrophic lenticels, and reduced leaf mass; when flooding duration increased in crossed experiments, root mass was reduced, there were more hypertrophic lenticels, and the leaf area was reduced. Cuttings achieved stress tolerance by inhibition of transpiration, osmotic adjustment, reduction of transpiration area, and development of hypertrophic lenticels. Stress tolerance was weak when repetitive 2- or 3-week floodings were combined with 3-week droughts. The duration of flooding and drought periods under which S. gracilistyla achieves stress tolerance may be critical in determining distributions along riverbanks.  相似文献   

16.
The photosynthetic responses to a flowering-inductive water-stress period and recovery were studied and compared in two Citrus species. Under greenhouse conditions, Fino lemon and Owari satsuma trees were subjected to moderate (−2 MPa at predawn) and severe (−3 MPa) water stress levels and were re-watered after 60 days. Vegetative growth was inhibited during the stress assays, and strong defoliation levels were reported, especially in Fino lemon. In both species, bud sprouting was induced after re-watering. Flowers and vegetative shoots developed in Owari satsuma after a drought period, and the development was independent of the stress level. In Fino lemon, vegetative shoots and flowers were primarily formed after moderate and severe stress, respectively. The photosynthetic rate and stomatal conductance were reduced by water stress, and a marked increase in water-use efficiency at the moderate water deficit level was observed. Nevertheless, the photosynthetic apparatus was not damaged, since the maximum quantum yield, photosynthetic pigment concentrations and Rubisco level and activity did not change. Furthermore, the measured malonyldialdehyde (MDA) and peroxidase activity indicated that oxidative stress was not specifically triggered by water stress in our study. Therefore, the gas exchange, fluorescence and biochemical parameters suggested that diffusional limitations to photosynthesis predominated in both of the studied Citrus species, and explained the rapid recovery of the photosynthetic parameters after rehydration. The net CO2 fixation rate and stomatal conductance were recovered within 24 h in Fino lemon, whereas 3 days were required in Owari satsuma. This suggests the presence of some metabolic limitations in the latter species. Furthermore, the sensibility of the defoliation rates, the accumulation of proline and the stomatal behaviour in response to water stress indicated a higher drought tolerance of Fino lemon, according to its better acclimation to hot climates.  相似文献   

17.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   

18.
The expression of a gene, encoding a dehydrin protein designated as DHN24 was analyzed at the protein level in two groups of Solanum species differing in cold acclimation ability. The DHN24 protein displays consensus amino acid sequences of dehydrins, termed K- and S-segments. The S-segment precedes three K-segments, classifying the protein into SK3-type dehydrins. A group of Solanum species able to cold acclimation constituted by S. sogarandinum and S. tuberosum, cv. Aster, and a second one composed of a S. sogarandinum line, that lost ability to cold acclimation, and of S. tuberosum, cv. Irga, displaying low ability to cold acclimation were studied. Under control conditions, noticeable levels of the DHN24 protein was observed in stems, tubers, and roots of Solanum species. No protein was detected in leaves. During low temperature treatment the DHN24 protein level substantially increased in tubers, in transporting organs and in apical parts, and only a small increase was observed in leaves. The increase in protein abundance was only observed in the plants able to cold acclimate and was found to parallel the acclimation capacity. Upon drought stress, the DHN24 level decreased in stems and in leaves, but increased in apical parts. These results suggest that Dhn24 expression is regulated by organ specific factors in the absence of stress and by factors related to cold acclimation processes during low temperature treatment in collaboration with organ-specific factors. A putative function of the SK3-type dehydrin proteins during plant growth and in the tolerance to low temperature is discussed.  相似文献   

19.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The aim of this study was to extent the range of knowledge about water relations and stomatal responses to water stress to ten Mediterranean plants with different growth forms and leaf habits. Plants were subjected to different levels of water stress and a treatment of recovery. Stomatal attributes (stomatal density, StoD), stomatal conductance (g s), stomatal responsiveness to water stress (SR), leaf water relations (pre-dawn and midday leaf water potential and relative water content), soil to leaf apparent hydraulic conductance (K L) and bulk modulus of elasticity (ε) were determined. The observed wide range of water relations and stomatal characteristics was found to be partially depended on the growth form. Maximum g s was related to StoD and the stomatal area index (SAI), while g s evolution after water stress and recovery was highly correlated with K L. Relationships between SR to water deficit and other morphological leaf traits, such as StoD, LMA or ε, provided no general correlations when including all species. It is concluded that a high variability is present among Mediterranean plants reflecting a continuum of leaf water relations and stomatal behaviour in response to water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号