首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Stromatolites have been used for inter-basinal biostratigraphic correlation, rock-stratigraphic correlation within individual sedimentary basins and for palaeoecological studies of various kinds. In the northern part of Victoria Island stromatolites are abundant in the uppermost part of the Gelenelg Formation, which is the lowest unit of the upper Proterozoic Shaler Group. Measurable attributes of these stromatolites include elongate mounds, intermound channel fillings, ridges and grooves, elongate collumns and inclined columns. In a widespread stromatolitic bank that forms the upper part of the Glenelg Formation, and also in stromatolites of the overlying Reynolds Point Formation, several of these features show a preferred orientation in a northeasterly direction. Herringbone cross-beds in associated sandy oolitic limestones show a northeast—southwest bimodal-bipolar distribution that is probably related to tidal activity. This similarity of directional features suggests that the stromatolite orientations are also likely to have been tidally influenced. If each stromatolitic bank were deposited diachronously then the northeasterly preferred orientation may be explained as being due to tidal currents active at a migrating shoreline that trended in a northwest-southeast direction. Alternatively, if, in the absence of metazoan competitors, the stromatolite builders contemporaneously occupied a large part of the basin floor, their northeasterly orientation may reflect tidal currents parallel to the length of an elongate embayment of the Precambrian sea, analogous in many ways to the present-day Persian Gulf. Such an interpretation, involving parallelism between coastline and elongate stromatolites, would differ from those of most earlier reports, in which elongate stromatolites have generally been assumed to have been oriented normal to the ancient shoreline.  相似文献   

2.
中国叠层石研究的历史和现状   总被引:10,自引:1,他引:9  
中国前寒武纪地层分布广泛。在20世纪70-80年代,中国学者对晚前寒武纪的叠层石进行了系统的研究,描述了类型众多的叠层石属种,并把叠层石组合应用于地层的划分和对比。近年来,为了揭示叠层石的形态发生,中国学者正在探讨硅质叠层石的生物组构模式和叠层石微层理的成因,以及叠层石中微生物生长、运动和造席过程。  相似文献   

3.
Some modern laminated find calcified stromatolitic structures are partially or completely formed by eukaryotes. Diatom populations in freshwater environments with elevated ionic concentrations contribute to calcite precipitation, and the formation of distinctive mineral-rich stromatolitic laminae. Two types of stromatolite-forming diatom populations were observed. In the first example, in stromatolites growing on a quarry ledge near Laegerdorf, North Germany, calcite crystals with biogenic imprints form around polysaccharide stalks of the diatom Gomphonema olivaceum var. calcarea (Cleve) Cleve-Euler. These individually precipitated crystals eventually become cemented together in layers, forming rigid, laminated stromatolitic deposits which drape over the quarry ledge. In the second example, in stromatolites forming in a shallow stream near Cuatro Ciénegas, Coahuila, Mexico, diatomaceous laminae also form by the accumulation of carbonate particles in a matrix of diatoms and their extracellular polysaccharide products. These laminae become thick enough to drape over individual stromatolite heads. The diatoms responsible for these deposits are Amphora aff. A. katii Selva, Nitzschia denticula Grun., and six other species. At Cuatro Ciénegas, in addition to the diatomaceous laminae, carbonate-rich cyanobacterial layers, dominated by two cyanobacterial species with different fabrics and porosities, are also present and contribute substantially to the growth of the stromatolites. In both the Laegerdorf and Cuatro Ciénegas examples, entire stromatolites or thick laminations on stromatolites are built by a small number of diatom species which produce copious amounts of extracellular stalk, gel, and sheath material, a propertuy they share with cyanobacterial stromatolite builders.  相似文献   

4.
Some modern laminated and calcified stromatolitic structures are partially or completely formed by eukaryotes. Diatom populations in freshwater environments with elevated ionic concentrations contribute to calcite precipitation, and the formation of distinctive mineral-rich stromatolitic laminae. Two types of stromatolite-forming diatom populations were observed. In the first example, in stromatolies growing on a quarry ledge near Laegerdorf, North Germany, calcite crystals with biogenic imprints form around polysaccharide stalks of the diatom Gomphonema olivaceum var. calcarea (Cleve) Cleve-Euler. These individually precipitated crystals eventunally become cemented together in layers, forming rigid, laminated stromatolitic deposits which drape over the quarry ledge. In the second example, in stromatolites forming in a shallow stream near Cuatro Ciénegas, Coahuila, Mexico, diatomaceous laminae also form by the accumulation of carbonate particles in a matrix of diatoms and their extracellular polysaccharide products. These laminae become thick enough to drape over individual stromatolite heads. The diatoms responsible for these deposits are Amphora aff. A. Katii Selva, Nitzschia denticula Grun., and six other species. At Cuatro Ciénegas, in addition to the diatomaceous laminae, carbonate-rich cyanobacterial layers, dominated by two cyanobacterial species with different fabrics and porosities, are also present and contribute substantially to the growth of the stromatolites. In both the Laegerdorf and Cuatro Ciénegas examples, entire stromatolites or thick laminations on stromatolites are built by a small number of diatom species which produce copious amounts of extracellular stalk, gel, and sheath material, a property they share with cyanobacterial stromatolite builders.  相似文献   

5.
Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.  相似文献   

6.
Lake Vanda is a cold nonturbulent, perennially ice‐covered lake in the valleys of southern Victoria Land, Antarctica. Observations made and samples collected under the 3.5 m ice in 1980 by SCUBA divers reveal that an extensive benthic microbial mat dominated by the filamentous blue‐green algae (cyanobacteria) Phormidium frigidum and Lyngbya martensiana is growing there. As is the case in other Antarctic lakes investigated by us thus far, the mat in Lake Vanda traps and binds sediment and precipitates calcite and is undisturbed by grazers and burrowers. Therefore, stromatolitic laminae are being generated. Unlike the other Antarctic lakes investigated in this region, Lake Vanda has (a) an ice cover and water that transmits significantly more light; (b) an ice cover that is permeable to gases and aeolian sediment; (c) no zone of lift‐off mat where photosynthetically generated oxygen would render the mat buoyant and cause it to separate from the substrate and float away; and (d) mat that has a distinctive pinnacle macrostructure. Although the laminae being laid down by the Lake Vanda mat do not retain the cone and ridge morphology of the living mat, the pinnacle macrostructure of the mat is similar to the Precambrian Conophyton stromatolites as well as microbial structures forming in Yellowstone hot springs, freshwater marshes in the Bahamas, and hypersaline intertidal mats in Baja California, Mexico, and Shark Bay, Australia. This suggests (a) Conophyton‐like structures similar to those abundant during the Precambrian can form under widely varying environmental conditions and (b) high latitudes should not be overlooked as sites of formation of ancient stromatolites.  相似文献   

7.
Abundant and preserved chain algal microfossils have been discovered in cherty stromatolitic mats from the second member of Gaoyuzhuang Formation (about 1,500 Ma old), Ling-qiu county of Shanxi province, China. They are described as Veteronostocale moniliforme Xu et Gao sp. nov.. The small diametral trichomes resemble the Family Nostocaceae in possessing specilized cells resembling the classic heterocysts and akinetes. This paper gives emphasis to the following remark: (1) The Gaoyuzhuang stromatolitic mats were products of microbial (Veteronostocale moniliforme) activity and the plant Nostocaceae was one of the main stromatolitic builders as both modern and Precambrian stromatolite-forming microorganisms; (2) Based on the fact that the chain fossils are preserved perpendicularly to the laminations the rates of sedimentation and algal growth were probably equal and each small sedimentary rhythm could be completed in about one or two months; (3) According to the environment and habits of living Nostoc Precambrian hydrosphere might be of a fresh water type.  相似文献   

8.
中国叠层石研究进展   总被引:14,自引:0,他引:14  
叠层石学科是在迂回曲折的道路上发展起来的.经中国前寒武纪古生物学家的共同努力,我国叠层石研究取得多项成就,主要有:建立了华北元古宙叠层石组合序列;对某些新元古代叠层石的微生物组分和微生物席特征进行了初步揭示;从理论上对矿化叠层石的成因提出了解释;提出假裸枝叠层石科(Pseudogymnosolenaceae)可作为中元古代地层对比的重要标志;利用雾迷山组的叠层石标本开展了古生物钟研究的尝试以及探明新元古代一种特殊的叠层石微构造可能具等时性.  相似文献   

9.
L J Rothschild 《Bio Systems》1991,25(1-2):13-23
Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.  相似文献   

10.
再论假裸枝叠层石科   总被引:1,自引:0,他引:1  
概要地介绍了假裸枝科叠层石的特征、分布时限、分类系统、研究方法和形成环境.提出该科叠层石有可能作为我国中元古代乃至蓟县系叠层石标志的意见.  相似文献   

11.
Well-preserved dome-shaped carbonate stromatolites occur in the lowermost part of the Sinemurian of the Lusitanian Basin (Portugal), at S. Pedro de Moel region (W of the basin). Deposition in the region took place on a westward-dipping carbonate ramp. The stromatolitic mounds are not found anywhere else in the Sinemurian of the basin and therefore are regarded as specific bioevents. In contrast to marginal-marine stromatolitic crusts, subtidal carbonate mounds other than sponge-mounds have been seldom reported in the Lower Jurassic, in particular in the Sinemurian, either from Europe or North-Africa. Therefore, the case documented here contributes to enhance the knowledge on stromatolites of this age in the Peri-Tethyan and Proto-Atlantic regions. The depositional setting of the studied succession is interpreted as a mainly low-energy, restricted marine one, punctuated by higher-energy episodes and, locally, subjected to more open marine influence. The existence of a topographic high and detached shoals at a more distal location of the ramp is likely, considering regional seismic evidence, the record in offshore (to the W) wells of peloidal/ooid wacke-packstones with detrital quartz and occurrence of a few ooid grainstones in the studied section. The inferred positive relief would act as a physical constraint that, coupled with the low-gradient of the ramp, defined an embayment-like environment in which the prevailing ecological conditions must have been, for the part of the succession bearing the stromatolites, unfavorable for many benthic organisms, favoring the microbial community. The upper part of the succession suggests stepwise environmental openness to more marine influence alternating with frequent environmental restriction.  相似文献   

12.
Recently, there is strong interest on microbe-mineral interactions. This is related also to recent expanded knowledges on extremely severe environments in which microbes live. Interaction between microbes and minerals contains biomineralization processes. Varieties of biomineralization products are found not only in various geologic materials and processes in the earth's history but also in present surface environments. Some hot springs represent such environments similar to those of unique and extremely severe environments for life. In this short review, the author briefly shows some examples of biomineralizations at some hot springs and mineral springs, Japan. In such environments, iron ore was formed and some varieties of growing stromatolites were found. The varieties of stromatolite are siliceous, calcic and manganese types. Cyanobacteria and the other bacteria are related to form the stromatolite structure. In the Gunma iron ore, sedimentary iron ores were mineralogically described in order to evaluate the role of microorganisms and plants in ore formation. The iron ore is composed of nanocrystalline goethite. Algal fossils are clearly preserved in some ores. Various products of biomineralization are found in the present pH 2-3, Fe2(+)- and SO4(2-)-rich streams. Bacterial precipitation had variations from amorphous Fe-P-(S) precipitates near the outlet of mineral spring, to Fe-P-S precipitates and to Fe-S-(P) precipitates. Mosses and green algae are also collecting Fe precipitates in and around the living and dead cells. The Gunma Iron Ore can be said as Biologically Induced Iron Ore. At Onikobe and Akakura hot springs, growing stromatolites of siliceous and calcareous types, were found, respectively. At Onikobe, The stromatolites grow especially near the geyser. Cyanobacterial filaments in stromatolite were well preserved in the siliceous and calcic stromatolites. The filaments oriented in two directions which form the layered structures were found. At Yunokoya hot spring, black and brittle stromatolitic structures which were composed of amorphous Mn minerals are growing. The form of these structures are hemispherical. Many bacteria that were coated with amorphous Mn minerals were found on these structures. Furthermore, Precambrian (Proterozoic : Wittenoom-Chichester region, western Australia) manganese stromatolite was briefly shown in comparison. The black stromatolite has been clarified to be composed of todorokite. Small spotty and donuts-like shaped todorokite aggregates which are very similar to biologically induced Mn-precipitates were found in massive dolomite layers.  相似文献   

13.
The shallow carbonate facies at the top of the Yacoraite Formation (Late Cretaceous–Early Palaeocene) in the Metán sub‐basin, Salta Basin (Cretaceous‐Eocene), northern Argentina, have domal stromatolitic boundstones with peculiar cavities, interpreted here as bioclaustrations. The cavities appear to have been produced by organisms that lived within the microbial mat contemporarily with its growth, producing a distinctive ichnofabric. This is the oldest reported record of bioclaustrations in stromatolites, and the first in shallow marine environments. The interpretation of the facies suggests a stressed shallow, restricted setting with variations in salinity, represented by an intertidal environment with an extensive tidal flat. Bioclaustrations, stromatolites, endobiont Yacoraite Formation (Cretaceous‐Palaeogene), Northwestern Argentina.  相似文献   

14.
Light-dependant biostabilisation of sediments by stromatolite assemblages   总被引:1,自引:0,他引:1  
For the first time we have investigated the natural ecosystem engineering capacity of stromatolitic microbial assemblages. Stromatolites are laminated sedimentary structures formed by microbial activity and are considered to have dominated the shallows of the Precambrian oceans. Their fossilised remains are the most ancient unambiguous record of early life on earth. Stromatolites can therefore be considered as the first recognisable ecosystems on the planet. However, while many discussions have taken place over their structure and form, we have very little information on their functional ecology and how such assemblages persisted despite strong eternal forcing from wind and waves. The capture and binding of sediment is clearly a critical feature for the formation and persistence of stromatolite assemblages. Here, we investigated the ecosystem engineering capacity of stromatolitic microbial assemblages with respect to their ability to stabilise sediment using material from one of the few remaining living stromatolite systems (Highborne Cay, Bahamas). It was shown that the most effective assemblages could produce a rapid (12-24 h) and significant increase in sediment stability that continued in a linear fashion over the period of the experimentation (228 h). Importantly, it was also found that light was required for the assemblages to produce this stabilisation effect and that removal of assemblage into darkness could lead to a partial reversal of the stabilisation. This was attributed to the breakdown of extracellular polymeric substances under anaerobic conditions. These data were supported by microelectrode profiling of oxygen and calcium. The structure of the assemblages as they formed was visualised by low-temperature scanning electron microscopy and confocal laser microscopy. These results have implications for the understanding of early stromatolite development and highlight the potential importance of the evolution of photosynthesis in the mat forming process. The evolution of photosynthesis may have provided an important advance for the niche construction activity of microbial systems and the formation and persistence of the stromatolites which came to dominate shallow coastal environments for 80% of the biotic history of the earth.  相似文献   

15.
Stromatolitic structures from the Late Precambrian Visingö Beds are described. The mode of development of these sedimentary-biogenic structures and the problems related to their characterization in a system of formulas are discussed. The study of the stromatolitic structures and their associated sediments proved that the stromatolitic structures LLH (vertically arranged, lateral-linked hemispher-oids) and SH (discrete, vertically stacked hemispheroids) could develop together on the same stromatolite dome, depending on different degrees of exposure to the action of water currents in an intertidal environment. Superimposed LLH and SH structures in the Visingsö Beds may indicate periodical changes in current activity depending on repeated periodic events such as tidal and/or storm waves.  相似文献   

16.
Stromatolites composed of apatite occur in post‐Lomagundi–Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro‐analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro‐organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north‐west India. Organic petrography by micro‐Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ13Corg values with an average of ?18.5‰ (1σ = 4.5‰). δ15N values of decarbonated rock powders are between ?1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2‐fixation and CO2‐fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C‐ and N‐XANES spectra. The presence of organic nitrogen was independently confirmed by a CN? peak detected by ToF‐SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow‐marine phosphorites.  相似文献   

17.
Bedded carbonate rocks from the 3.45 Ga Warrawoona Group, Pilbara Craton, contain structures that have been regarded either as the oldest known stromatolites or as abiotic hydrothermal deposits. We present new field and petrological observations and high‐precision REE + Y data from the carbonates in order to test the origin of the deposits. Trace element geochemistry from a number of laminated stromatolitic dolomite samples of the c. 3.40 Ga Strelley Pool Chert conclusively shows that they precipitated from anoxic seawater, probably in a very shallow environment consistent with previous sedimentological observations. Edge‐wise conglomerates in troughs between stromatolites and widespread cross‐stratification provide additional evidence of stromatolite construction, at least partly, from layers of particulate sediment, rather than solely from rigid crusts. Accumulation of particulate sediment on steep stromatolite sides in a high‐energy environment suggests organic binding of the surface. Relative and absolute REE + Y contents are exactly comparable with Late Archaean microbial carbonates of widely agreed biological origin. Ankerite from a unit of bedded ankerite–chert couplets from near the top of the stratigraphically older (3.49 Ga) Dresser Formation, which immediately underlies wrinkly stromatolites with small, broad, low‐amplitude domes, also precipitated from anoxic seawater. The REE + Y data of carbonates from the Strelley Pool Chert and Dresser Formation contrast strongly with those from siderite layers in a jasper–siderite–Fe‐chlorite banded iron‐formation from the base of the Panorama Formation (3.45 Ga), which is clearly hydrothermal in origin. The geochemical results, together with sedimentological data, strongly support: (1) deposition of Dresser Formation and Strelley Pool Chert carbonates from Archaean seawater, in part as particulate carbonate sediment; (2) biogenicity of the stromatolitic carbonates; (3) a reducing Archaean atmosphere; (4) ongoing extensive terrestrial erosion prior to ~3.45 Ga.  相似文献   

18.
Ferruginous stromatolites occur associated with Middle Jurassic condensed deposits in several Tethyan and peri‐Tethyan areas. The studied ferruginous stromatolites occurring in the Middle Jurassic condensed deposits of Southern Carpathians (Romania) preserve morphological, geochemical, and mineralogical data that suggest microbial iron oxidation. Based on their macrofabrics and accretion patterns, we classified stromatolites: (1) Ferruginous microstromatolites associated with hardground surfaces and forming the cortex of the macro‐oncoids and (2) Domical ferruginous stromatolites developed within the Ammonitico Rosso‐type succession disposed above the ferruginous microstromatolites (type 1). Petrographic and scanning electron microscope (SEM) examinations reveal that different types of filamentous micro‐organisms were the significant framework builders of the ferruginous stromatolitic laminae. The studied stromatolites yield a large range of δ56Fe values, from ?0.75‰ to +0.66‰ with predominantly positive values indicating the prevalence of partial ferrous iron oxidation. The lowest negative δ56Fe values (up to ?0.75‰) are present only in domical ferruginous stromatolites samples and point to initial iron mobilization where the Fe(II) was produced by dissimilatory Fe(III) reduction of ferric oxides by Fe(III)‐reducing bacteria. Rare‐earth elements and yttrium (REE + Y) are used to decipher the nature of the seawater during the formation of the ferruginous stromatolites. Cerium anomalies display moderate to small negative values for the ferruginous microstromatolites, indicating weakly oxygenated conditions compatible with slowly reducing environments, in contrast to the domical ferruginous stromatolites that show moderate positive Ce anomalies suggesting that they formed in deeper, anoxic–suboxic waters. The positive Eu anomalies from the studied samples suggest a diffuse hydrothermal input on the seawater during the Middle Jurassic on the sites of ferruginous stromatolite accretion. This study presents the first interpretation of REE + Y in the Middle Jurassic ferruginous stromatolites of Southern Carpathians, Romania.  相似文献   

19.
Stromatolitic cherts of the late Precambrian Gaoyuzhuang Formation at the Stratotype section of the “Sinian Suberathem” near Jixian, North China, contain a varied assemblage of well-preserved filamentous and coccoid blue-green algae. This assemblage constitutes perhaps one of the well-preserved, diverse Precambrian microbiota now known. The fossiliferous cherts occur in the lower part of this formation which is about 1500 Ma-old interpolated depending on Pb-Pb ages yielded from the middle part of it and K-Ar ages yielded from the underlying Dahongyu Formation. Fifteen new taxa of microfossils, comprising 6 new genera, are here described from the Gaoyuzhuang stromatolitic cherts. All species of blue-green algae have been recognized in the assemblage and refer to the modern Chroococcaceae, OsciUatoriaceae, Nostocaceae and Rivullariaceae. Most of these fossil algae are comparable in morphological details particularly to living Cyanophyta. It is evident that the cyanophytes had become well-diversified already by the late Precambrian. This evidence indicates that at least the morphological details are similar to those exhibited in living cyanophytes and these blue-green algae have not changed since Gaoyuzhuang time. This apparent evolutionary conservatism is probably attributable to a wide ecological tolerance and flexibility and also reflects its inherent genetic stability. The plant phylogenesis especially of Cyanophyta is discussed in this paper according to microfossil records detected in the thin sections of stromatolitic cherts from the Gaoyuzhuang Formation. Based on morphological characteristics and their generations Rivullariaceae may originate from Oscillatoriaceae. In addition algal biocoenoses in this stromatolitic chert grew in the form of laminar mats in the apparently subtital to intertital environment. The paleoclimate was subtropical or tropical. The following new taxa are here described:Microcystopsis yaoi, Eoaphanothece zhuiana, Oscillatoriopsis acuminata, O. hemisphaerica, O. disciformis, O. glabra, O. tuberculata, Eophormidium liangii, E. capitatum, E. semicirculare, Schizothropsis caudata, Paleoisocystis monosporata, P. disporata, Anabaenidium sophoroides and Paleocalothrix xui.  相似文献   

20.
Ezaki Y  Liu JB  Adachi N 《Geobiology》2012,10(1):48-59
Stromatolites are one of the oldest and most intriguing organosedimentary deposits. In contrast to stromatolites of the Precambrian to Early Ordovician, Phanerozoic equivalents occurred episodically under specific conditions. A group of previously undescribed stromatolites in composition occur in the Lower Triassic (Olenekian) at the Dajiang section in the Luodian region of Guizhou Province, South China. We described the textures of these stromatolites with the aim of determining the genetic mechanisms and revealing the nature of interactions between micro-organisms and marine environments. Mesoscopic features show that the stromatolites consist of several sets of stacked slices, and that they are embedded in alternating beds of fine and coarse microsphere packstones that include aggregates of microspheres, forming grapestones and lumps. Microscopically, the stromatolites consist of spar- and dolomite-infilled microspheres (average diameter, 100 μm), micrites, peloids, small-sized pyrite framboids (average diameter, 5.8 μm) and fenestrae. Micrite-dominant intercalations accentuate laminated textures at a mesoscopic level and are laterally continuous with micrite-rich parts in surrounding interstromatolites, indicating the simultaneous, widespread deposition of these layers. The microspheres and associated micrites were the products of in situ microbial activity, probably sulphate-reducing or anoxygenic phototrophic bacteria, which led to the formation of these unusual stromatolites. Even during a protracted period of harsh marine conditions, the micrite-rich carpets were deposited intermittently on the stromatolites and their surroundings under severely anoxic/sulphidic conditions. The presence of Early Triassic stromatolites and their subtle but important vertical variations in texture provide a record of temporal changes in marine conditions during geobiologically critical intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号