首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-6 (IL-6) drives the sequential assembly of a receptor complex formed by the IL-6 receptor (IL-6R alpha) and the signal transducing subunit, gp130. A model of human IL-6 (hIL-6) was constructed by homology using the structure of bovine granulocyte colony stimulating factor. The modeled cytokine was predicted to interact sequentially with the cytokine binding domains of IL-6R alpha and gp130 bridging them in a way similar to that of the interaction between growth hormone and its homodimeric receptor. Several residues on helices A and C which were predicted as contact points between IL-6 and gp130 and therefore essential for IL-6 signal transduction, were subjected to site-directed mutagenesis individually or in combined form. Interestingly, while single amino acid changes never produced major alterations in IL-6 bioactivity, a subset of double mutants of Y31 and G35 showed a considerable reduction of biological activity and were selectively impaired from associating with gp130 in binding assays in vitro, while they maintained wild-type affinity towards hIL-6-R alpha. More importantly, we demonstrated the antagonistic effect of mutant Y31D/G35F versus wild-type IL-6.  相似文献   

2.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

3.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. A complex of IL-11 and the IL-11 receptor (IL-11R) has been shown to interact with gp130, with high affinity, and to induce gp130- dependent signaling. In this study, we have identified residues crucial for the binding of murine IL-11 (mIL-11) to both the IL-11R and gp130 by examining the activities of mIL-11 mutants in receptor binding and cell proliferation assays. The location of these residues, as predicted from structural studies and a model of IL-11, reveals that mIL-11 has three distinct receptor binding sites. These are structurally and functionally analogous to the previously defined receptor binding sites I, II, and III of interleukin-6 (IL-6). This supports the hypothesis that IL-11 signals via the formation of a hexameric receptor complex and indicates that site III is a generic feature of cytokines that signal via association with gp130.  相似文献   

4.
Cytokines of the interleukin-6 (IL-6)-type family all bind to the glycoprotein gp130 on the cell surface and require interaction with two gp130 or one gp130 and another related signal transducing receptor subunit. In addition, some cytokines of this family, such as IL-6, interleukin-11, ciliary neurotrophic factor, neuropoietin, cardiotrophin-1, and cardiotrophin-1-like-cytokine, interact with specific ligand binding receptor proteins. High- and low-affinity binding sites have been determined for these cytokines. So far, however, the stoichiometry of the signaling receptor complexes has remained unclear, because the formation of the cytokine/cytokine-receptor complexes has been analyzed with soluble receptor components in solution, which do not necessarily reflect the situation on the cellular membrane. Consequently, the binding affinities measured in solution have been orders of magnitude below the values obtained with whole cells. We have expressed two gp130 extracellular domains in the context of a Fc-fusion protein, which fixes the receptors within one dimension and thereby restricts the flexibility of the proteins in a fashion similar to that within the plasma membrane. We measured binding of IL-6 and interleukin-b receptor (IL-6R) by means of fluorescence-correlation spectroscopy. For the first time we have succeeded in recapitulating in a cell-free condition the binding affinities and dynamics of IL-6 and IL-6R to the gp130 receptor proteins, which have been determined on whole cells. Our results demonstrate that a dimer of gp130 first binds one IL-6/IL-6R complex and only at higher ligand concentrations does it bind a second IL-6/IL-6R complex. This view contrasts with the current perception of IL-6 receptor activation and reveals an alternative receptor activation mechanism.  相似文献   

5.
Molecular cloning and expression of an IL-6 signal transducer, gp130   总被引:100,自引:0,他引:100  
M Hibi  M Murakami  M Saito  T Hirano  T Taga  T Kishimoto 《Cell》1990,63(6):1149-1157
Interleukin-6 (IL-6) signal is transduced through a membrane glycoprotein, gp130, which associates with IL-6 receptor (IL-6-R). A cDNA encoding human gp130 has been cloned, revealing that it consists of 918 amino acids with a single transmembrane domain. The extracellular region comprises six units of a fibronectin type III module, and part of this region of approximately 200 amino acids has features typical of a cytokine receptor family. A cDNA-expressed gp130 showed no binding property to IL-6 or several other cytokines. Although a transfectant with an IL-6-R cDNA expressed mainly low affinity IL-6 binding sites, an increase in high affinity binding sites was observed after cotransfection with a gp130 cDNA. This confirmed that a gp130 is involved in the formation of high affinity IL-6 binding sites. A cloned gp130 could associate with a complex of IL-6 and soluble IL-6-R and transduce the growth signal when expressed in a murine IL-3-dependent cell line.  相似文献   

6.
7.
Interleukin-6 signal transducer gp130 mediates oncostatin M signaling.   总被引:7,自引:0,他引:7  
Oncostatin M (OM) is a multifunctional cytokine that is structurally and functionally related to interleukin 6 (IL-6) and leukemia inhibitory factor (LIF). The specific receptor for OM has been demonstrated (by chemical cross-linking) to be a 150-kDa protein in a number of cell lines. The IL-6 signal transducer, gp130, is also an affinity converter for the LIF receptor. It does not bind to either IL-6 or LIF, but associates with the alpha subunits of the receptors and transduces the signals. We examined the possible involvement of gp130 in OM binding and signaling. We demonstrate that: (a) anti-gp130 monoclonal antibodies (mAbs) block the inhibitory effect of OM on A375 cell growth, (b) the binding and cross-linking of 125I-OM to H2981 cells are completely abolished by anti-gp130 mAbs, (c) the cross-linked OM-receptor complex is immunoprecipitated by anti-gp130 mAbs, and (d) COS-7 cells transfected with the full-length cDNA encoding gp130 exhibit increased OM binding and cross-linking, which are also blocked by anti-gp130 mAbs. Therefore, we conclude that the 150-kDa OM binding protein previously characterized in a variety of cell lines is gp130. OM is the natural ligand for gp130 and gp130 mediates the biological responses of OM.  相似文献   

8.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

9.
10.
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.  相似文献   

11.
The shared cytokine receptor gp130 signals as?a homodimer or heterodimer through activation of Janus kinases (Jaks) associated with the receptor intracellular domains. Here, we reconstitute, in parts and whole, the full-length gp130 homodimer in complex with the cytokine interleukin-6 (IL-6), its alpha receptor (IL-6Rα) and Jak1, for electron microscopy imaging. We find that the full-length gp130 homodimer complex has intimate interactions between the trans- and juxtamembrane segments of the two receptors, appearing to form a continuous connection between the extra- and intracellular regions. 2D averages and 3D reconstructions of full-length Jak1 reveal a three lobed structure comprising FERM-SH2, pseudokinase, and kinase modules possessing extensive intersegmental flexibility that likely facilitates allosteric activation. Single-particle imaging of?the gp130/IL-6/IL-6Rα/Jak1 holocomplex shows Jak1 associated with the membrane proximal intracellular regions of gp130, abutting the would-be inner leaflet of the cell membrane. Jak1 association with gp130 is enhanced by the presence of?a membrane environment.  相似文献   

12.
Interleukin-11 (IL-11) belongs to the interleukin-6 (IL-6)-type subfamily of long-chain helical cytokines including IL-6, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M, and cardiotrophin-1, which all share the glycoprotein gp130 as a signal transducing receptor component. IL-11 acts on cells expressing gp130 and the IL-11 receptor (IL-11R) alpha-subunit (IL-11Ralpha). The structural epitopes of IL-11 required for the recruitment of the individual receptor subunits have not yet been defined. Based on the structure of CNTF, a three-dimensional model of human IL-11 was built. Using this model, 10 surface exposed amino acid residues of IL-11 were selected for mutagenesis using analogies to the well-characterized receptor recruitment sites of IL-6, CNTF, and LIF. The respective mutants of human IL-11 were expressed as soluble fusion proteins in bacteria. Their biological activities were determined on HepG2 and Ba/F3-130-11alpha cells. Several mutants with substantially decreased bioactivity and one hyperagonistic mutant were identified and further analyzed with regard to recruitment of IL-11Ralpha and gp130. The low-activity mutant I171D still binds IL-11Ralpha but fails to recruit gp130, whereas the hyperagonistic variant R135E more efficiently engages the IL-11R subunits. The low-activity mutants R190E and L194D failed to bind to IL-11Ralpha. These findings reveal a common mechanism of receptor recruitment in the family of IL-6-type cytokines and offer considerable perspectives for the rational design of IL-11 antagonists and hyperagonists.  相似文献   

13.
The soluble IL-6 receptors: serum levels and biological function.   总被引:8,自引:0,他引:8  
IL-6 exerts its biological activities through interaction with specific receptors expressed on the surface of target cells. IL-6 binds first to a low-affinity (10(-9) M) subunit, a 80 kDa glycoprotein also called gp80 or IL-6R alpha. The IL-6/IL-6R alpha complex recruits the signal-transducing b subunit, a 130 kDa glycoprotein called gp130. The association of gp130 with IL-6 and IL-6R alpha leads to the formation of the high-affinity IL-6 receptor complex, to the linkage of two gp130 subunits and to signal transduction. Soluble forms of both receptors have been described and found in biological fluids. Soluble cytokine receptors are generated by either proteolytic cleavage of their membrane moiety or by alternative splicing. Both mechanisms have been described for sIL-6R and sgp130 formation. Interestingly, the association of IL-6 with the soluble form of IL-6R alpha is capable of eliciting a biological response in cells that express only the membrane gp130. This type of activation, called "trans-signalling", renders virtually all cells capable of responding to IL-6/sIL-6R alpha complexes, making for a large new spectrum of IL-6 activities, ranging from the control of the immune response to involvement in pathological states. In this review the biological activities of IL-6 will be considered in the light of new knowledge concerning the association of IL-6 and the soluble IL-6 receptors.  相似文献   

14.
gp130 is a shared cytokine signaling receptor and the founding member of the 'tall' class of cytokine receptors. A crystal structure of the ligand-binding domains of gp130 in complex with human interleukin-6 (IL-6) and its a-receptor (IL-6Ralpha) revealed a hexameric architecture in which the gp130 membrane-distal regions were approximately 100 A apart, in contrast to the close apposition seen between short cytokine receptor complexes. Here we used single-particle EM to visualize the entire extracellular hexameric IL-6-IL-6Ralpha-gp130 complex, containing all six gp130 domains. The structure reveals that gp130 is bent such that the membrane-proximal domains of gp130 are close together at the cell surface, enabling activation of intracellular signaling. Variation in the receptor bend angles suggests a possible conformational transition from open to closed states upon ligand binding; this transition is probably representative of the other tall cytokine receptors.  相似文献   

15.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

16.
Normal platelets possess the soluble form of IL-6 receptor   总被引:2,自引:0,他引:2  
Interleukin 6 is a multifunctional cytokine that exerts its biological activity through binding to an 80 Kd specific receptor (IL-6Ralpha) and a 130 Kd signal-transducing unit (gp130). A 55 Kd soluble IL-6R (IL-6sR) has also been described which, after binding to IL-6 is also able to activate gp130. The presence of IL-6Ralpha was described in some megakaryoblastic cell lines but is still controversial in normal megakaryocytes. In this study we demonstrate the presence of intraplatelet IL-6sR by Western blot through the appearance of a 55 Kd protein and the finding of detectable amounts of IL-6sR in the platelet content by ELISA technique. Besides, we showed IL-6sR release during platelet activation induced by thrombin and a complex of ADP and epinephrine. IL-6Ralpha on platelet membrane could not be found neither by Western blot nor by flow cytometry. The IL-6sR released during platelet activation and complexed to IL-6 could act on cell types such as endothelial cells that do not possess IL-6Ralpha through binding to gp130.Besides, since we could not find IL-6R on platelet membrane, the potentiating effect of IL-6 on platelet function could be explained through binding of IL-6sR/IL-6 complex to platelet membrane gp130.  相似文献   

17.
Interleukin-11 (IL-11) is a member of the gp130 family of cytokines. These cytokines drive the assembly of multisubunit receptor complexes, all of which contain at least one molecule of the transmembrane signaling receptor gp130. IL-11 has been shown to induce gp130-dependent signaling through the formation of a high affinity complex with the IL-11 receptor (IL-11R) and gp130. Site-directed mutagenesis studies have identified three distinct receptor binding sites of IL-11, which enable it to form this high affinity receptor complex. Here we present data from immunoprecipitation experiments, using differentially tagged forms of ligand and soluble receptor components, which show that multiple copies of IL-11, IL-11R, and gp130 are present in the receptor complex. Furthermore, it is demonstrated that sites II and III of IL-11 are independent gp130 binding epitopes and that both are essential for gp130 dimerization. We also show that a stable high affinity complex of IL-11, IL-11R, and gp130 can be resolved by nondenaturing polyacrylamide gel electrophoresis, and its composition verified by second dimension denaturing polyacrylamide gel electrophoresis. Results indicate that the three receptor binding sites of IL-11 and the Ig-like domain of gp130 are all essential for this stable receptor complex to be formed. We therefore propose that IL-11 forms a hexameric receptor complex composed of two molecules each of IL-11, IL-11R, and gp130.  相似文献   

18.
Here, we report the analysis of the structure-function relationship of the extracellular region of human interleukin 6 receptor (IL-6R). Upon binding of IL-6, IL-6R becomes associated extracellularly with a non-IL-6-binding but signal transducing molecule, gp130, and the IL-6 signal is generated. In this region, the cytokine receptor family domain, but not the immunoglobulin-like domain, was responsible both for IL-6 binding and for signal transduction through gp130. Because a soluble, extracellular portion of IL-6R (sIL-6R) could bind IL-6 and mediate IL-6 functions through gp130, amino acid substitutions were introduced into sIL-6R by site-directed mutagenesis. The results, together with the previously proposed tertiary structure model, suggested that the amino acid residues critical for IL-6 binding have a tendency to be distributed to the hinge region between the two 'barrel'-like fibronectin type III modules and to the same side of these two 'barrels'. Amino acid residues, of which substitutions barely affected the IL-6-binding but did abolish the IL-6 signalling capability of sIL-6R, were identified and found to be located mainly in the membrane proximal half of the second barrel. sIL-6R mutants carrying such substitutions lacked the capacity to associate with gp130 in the presence of IL-6.  相似文献   

19.
Interleukin-6 (IL-6) triggers the formation of a high affinity receptor complex with the ligand binding subunit IL-6Ralpha and the signal transducing chain gp130. Since the intracytoplasmic region of the IL-6Ralpha does not contribute to signaling, soluble forms of the extracytoplasmic domain (sIL-6Ralpha), potentiate IL-6 bioactivity and induce a cytokine-responsive status in cells expressing gp130 only. This observation, together with the detection of high levels of circulating soluble human IL-6Ralpha (shIL-6Ralpha) in sera, suggests that the hIL-6-shIL-6Ralpha complex is an alternative form of the cytokine. Here we describe the generation of human IL-6 (hIL-6) variants with strongly enhanced shIL-6Ralpha binding activity and bioactivity. Homology modeling and site-directed mutagenesis of hIL-6 suggested that the binding interface for hIL-6Ralpha is constituted by the C-terminal portion of the D-helix and residues contained in the AB loop. Four libraries of hIL-6 mutants were generated by each time fully randomizing four different amino acids in the predicted AB loop. These libraries were displayed monovalently on filamentous phage surface and sorted separately for binding to immobilized shIL-6Ralpha. Mutants were selected which, when expressed as soluble proteins, showed a 10- to 40-fold improvement in shIL-6Ralpha binding; a further increase (up to 70-fold) was achieved by combining variants isolated from different libraries. Interestingly, high affinity hIL-6 variants show strongly enhanced bioactivity on cells expressing gp13O in the presence of shIL-6Ralpha at concentrations similar to those normally found in human sera.  相似文献   

20.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号