首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein-Barr virus replicon, oriP, is included to ensure stable episomal propagation of the large insert clones upon transfection into mammalian cells. (2) The blasticidin deaminase gene is placed in a eukaryotic expression cassette to enable selection for the desired mammalian clones by using the nucleoside antibiotic blasticidin. Sequences important to select for loxP-specific genome targeting in mammalian chromosomes are also present. In addition, we demonstrate that the attTn7 sequence present on the vectors permits specific addition of selected features to the library clones. Unique sites have also been included in the vector to enable linearization of the large-insert clones, e. g., for optical mapping studies. The pPAC4 vector has been used to generate libraries from the human, mouse, and rat genomes. We believe that clones from these libraries would serve as an important reagent in functional experiments, including the identification or validation of candidate disease genes, by transferring a particular clone containing the relevant wildtype gene into mutant cells or transgenic or knock-out animals.  相似文献   

2.
Construction and characterization of a gridded cattle BAC library   总被引:3,自引:0,他引:3  
A bovine genomic large-insert bacterial artificial chromosome (BAC) library has been constructed from leukocytes of a Holstein-Friesian male. Size fractionated DpnII-digested genomic DNA was ligated to the dephosphorylated BamH1 ends of a pBACe3.6 vector. Approximately 8.3 x 10(4) individual BAC clones were picked into 384-well plates. Two-hundred and sixty-seven randomly chosen clones were characterized by pulsed-field gel electrophoresis (PFGE). The average insert size was 104 kb with a frequency of clones without inserts of 5.5%. Thirty-four BAC clones were mapped by fluorescence in situ hybridization (FISH) to cattle chromosomes. Three showed signals at more than one location, one of them on the centromeric regions of all autosomes, indicating that the clone contains centromeric repeats. A subset of these BAC clones was used for the development of sequence tagged sites. Both subcloning and direct sequencing of the BACs were used for generating sequence tagged site information. The clones from the library were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Membranes and superpools are available through the Resource Centre of the German Human Genome Project in Berlin (http:// www.rzpd.de).  相似文献   

3.
For molecular and cytogenetic studies, two partial bacterial artificial chromosome (BAC) libraries of the garlic cultivar Allium sativum L. 'Danyang' were constructed using high molecular weight (HMW) garlic DNA, the pBAC1-SACB1 vector, and the pIndigoBAC536 vector. The average insert size of the BAC library was about 90 kb. The sequence compositions of the BAC clones were characterized by Southern hybridization with garlic genomic DNA and a repetitive sequence clone of garlic. Two BAC clones with weak signals (thus implying mostly unique sequences), GBC2-5e and GBC2-4d, were selected for FISH analysis. FISH analysis localized the GBC2-5e (approximately 100 kb) BAC clone on the long arm of garlic chromosome 7. The other BAC clone, GBC2-4d (approximately 110 kb), gave rise to discrete FISH signals on a mid-size early metaphase chromosome. The FISH screening with BAC clones proved to be a useful resource for molecular cytogenetic studies of garlic, and will be useful for further mapping and sequencing studies of important genes of this plant.  相似文献   

4.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   

5.
A porcine genomic bacterial artificial chromosome (BAC) library was constructed by cloning partial EcoRI-digested high-molecular-weight DNA from a Korean native boar into the EcoRI site of the pBACe3.6 vector. The library consists of about 165,000 clones with an average insert size of 125 kb, representing about seven genome equivalents of coverage. About 130,000 clones (corresponding to fivefold genome coverage) were arrayed in 14 superpools which were organized as four dimensional pools. The library was further characterized by PCR screening of 38 microsatellite probes. An average of 4.84 positive clones were selected per marker. This indicates that the library is unbiased and will be useful for initiating fine scale physical mapping of major QTL in pigs. The library is being used to isolate specific clones by screening with type I and type II marker clones located in the QTL region affecting intramuscular fat content on SSC6.  相似文献   

6.
Bacterial Artificial Chromosome (BAC) clones are widely used for retrieving genomic DNA sequences for gene targeting. In this study, low-copy-number plasmids pBAC-FB, pBAC-FC, and pBAC-DE, which carry the F plasmid replicon, were generated from pBACe3.6. pBAC-FB was successfully used to retrieve a sequence of a BAC that was resistant to retrieval by a high-copy-number plasmid via λ Red-mediated recombineering (gap-repair cloning). This plasmid was also used to retrieve two other genes from BAC, indicating its general usability retrieving genes from BAC. The retrieved genes were manipulated in generating targeting vectors for gene knockouts by recombineering. The functionality of the targeting vector was further validated in a targeting experiment with C57BL/6 embryonic stem cells. The low-copy-number plasmid pBAC-FB is a plasmid of choice to retrieve toxic DNA sequences from BACs and to manipulate them to generate gene-targeting constructs by recombineering.  相似文献   

7.
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.  相似文献   

8.

Background

The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy.

Results

The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries.

Conclusions

The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes.  相似文献   

9.
BAC libraries generated from restriction-digested genomic DNA display representational bias and lack some sequences. To facilitate completion of genome projects, procedures have been developed to create BACs from DNA physically sheared to create fragments extending up to 200 kb. The DNA fragments were repaired to create blunt ends and ligated to a new BAC vector. This approach has been tested by generating BAC libraries from Drosophila DNA with insert lengths between 50 and 150 kb. The libraries lack chimeric clone problems as determined by mapping paired BAC-end sequences to the assembled fly genome sequence. The utility of "sheared" libraries was demonstrated by closure of a previous clone gap and by isolation of clones from telomeric regions, which were notably absent from previous Drosophila BAC libraries.  相似文献   

10.
A bacterial artificial chromosome (BAC) library has been established from genomic DNA isolated from the trematode parasite of human, Schistosoma mansoni. This library consists of more than 21,000 recombinant clones carrying inserts in the pBeloBAC11 vector. The mean insert size was 100 kb, representing an approximate 7.95-fold genome coverage. Library screening with eight chromosome-specific or single-copy gene probes yielded between 1 and 9 positive clones, and none of those tested was absent from the library. End sequences were obtained for 93 randomly selected clones, and 37 showed sequence identity to S. mansoni sequences (ESTs, genes, or repetitive sequences). A preliminary analysis by fluorescence in situ hybridization localized 8 clones on schistosome chromosomes 1 (2 clones), 2, 3, 5, Z, and W (3 clones). This library provides a new resource for the physical mapping and sequencing of the genome of this important human pathogen.  相似文献   

11.
Bacterial artificial chromosome (BAC) cloning systems currently in use generate high quality genomic libraries for gene mapping, identification, and sequencing. However, the most commonly used BAC cloning systems do not facilitate functional studies in eukaryotic cells. To overcome this limitation, we have developed pEBAC190G, a new BAC vector that combines the features of the first generation PAC/BAC vectors with eukaryotic elements that facilitate the transfection, episomal maintenance, and functional analysis of large genomic fragments in eukaryotic cells. A number of different cloning strategies may be used to retrofit genomic fragments from existing libraries into the new vector. The system was tested by the retrofitting of a 170kb NotI genomic fragment from the RPCI-11 BAC library into the NotI site of pEBAC190G. Clones from any eukaryotic genomic library harboured in this vector can be transferred from bacteria directly to eukaryotic cells for functional analysis.  相似文献   

12.
Libraries constructed in bacterial artificial chromosome (BAC) vectors have become the choice for clone sets in high throughput genomic sequencing projects primarily because of their high stability. BAC libraries have been proposed as a source for minimally over-lapping clones for sequencing large genomic regions, and the use of BAC end sequences (i.e. sequences adjoining the insert sites) has been proposed as a primary means for selecting minimally overlapping clones for sequencing large genomic regions. For this strategy to be effective, high throughput methods for BAC end sequencing of all the clones in deep coverage BAC libraries needed to be developed. Here we describe a low cost, efficient, 96 well procedure for BAC end sequencing. These methods allow us to generate BAC end sequences from human and Arabidoposis libraries with an average read length of >450 bases and with a single pass sequencing average accuracy of >98%. Application of BAC end sequences in genomic sequen-cing is discussed.  相似文献   

13.
We report one large-insert BIBAC library and three BAC libraries for japonica rice cv Nipponbare. The BIBAC library was constructed in the HindIII site of a plant-transformation-competent binary vector (pCLD04541) and the three BAC libraries were constructed in the BamHI, HindIII and EcoRI sites of a BAC vector (pECBAC1), respectively. Each library contains 23,040 clones, has an average insert size of 130 kb, 170 kb, 150 kb and 156 kb, and covers 6.7x, 8.7x, 7.7x and 8.0 x rice haploid genomes, respectively. The combined libraries contain 92,160 clones in total, covering 31.1 x rice haploid genomes. To demonstrate their utility, we screened the libraries with 55 DNA markers mapped to chromosome 8 of the rice genetic maps and analyzed a number of clones by the restriction fingerprinting and contig assembly method. The results indicate that the libraries completely cover the rice genome and, thus, are well-suited for genome research in rice and other gramineous crops. The BIBAC library represents the first plant-transformation-competent large-insert DNA library for rice, which will streamline map-based cloning, functional analysis of the rice genome sequence and molecular breeding in rice and other grass species. These libraries are being used in the development of a whole-genome, BAC/BIBAC-based, integrated physical, genetic and sequence map of rice and in the research of genome-wide comparative genomics of grass species.  相似文献   

14.
Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.  相似文献   

15.
苏云金芽胞杆菌大质粒pBMB165的克隆与分析   总被引:1,自引:0,他引:1  
以pBeloBAC11为载体,成功构建了苏云金芽胞杆菌YBT-1765的基因组人工染色体(BAC)文库和质粒BAC文库.根据已克隆的包含复制子ori165在内的3.6kb片段中编码复制蛋白Rep165的核苷酸序列设计探针,通过染色体步移方式,对质粒文库和基因组文库进行筛选,得到13个覆盖YBT-1765菌株中质粒pBMB165不同区域的克隆子.通过Hind Ⅲ和BamH Ⅰ酶切分析,建立了质粒pBMB165的物理图谱和线状重叠连锁图,并测算出该质粒的大小为82kb.根据部分核苷酸序列初步统计了pBMB165上转座因子的存在机率.YBT-1765菌株基因组文库的构建和物理图谱的绘制为克隆苏云金芽胞杆菌大质粒提供了一套可行的方案,成功解决了大质粒难克隆的问题.  相似文献   

16.
Two plant-transformation-competent large-insert binary clone bacterial artificial chromosome (hereafter BIBAC) libraries were previously constructed for soybean cv. Forrest, using BamHI or HindIII. However, they are not well suited for clone-based genomic sequencing due to their larger ratio of vector to insert size (27.6 kbp:125 kbp). Therefore, we developed a larger-insert bacterial artificial chromosome (BAC) library for the genotype in a smaller vector (pECBAC1), using EcoRI. The BAC library contains 38,400 clones; about 99.1% of the clones have inserts; the average insert size is 157 kbp; and the ratio of vector to insert size is much smaller (7.5 kbp:157 kbp). Colony hybridization with probes derived from several chloroplast and mitochondrial genes showed that 0.89% and 0.45% of the clones were derived from the chloroplast and mitochondrial genomes, respectively. Considering these data, the library represents 5.4 haploid genomes of soybean. The library was hybridized with six RFLP marker probes, 5S rDNA and 18S-5.8S-25S rDNA, respectively. Each RFLP marker hybridized to about six clones, and the 5S and 18S-5.8S-25S rDNA probes collectively hybridized to 402 BACs—about 1.05% of the clones in the library. The BAC library complements the existing soybean Forrest BIBAC libraries by using different restriction enzymes and vector systems. Together, the BAC and BIBAC libraries encompass 13.2 haploid genomes, providing the most comprehensive clone resource for a single soybean genotype for public genome research. We show that the BAC library has enhanced the development of the soybean whole-genome physical map and use of three complementary BAC libraries improves genome physical mapping by fingerprint analysis of most of the clones of the library. The rDNA-containing clones were also fingerprinted to evaluate the feasibility of constructing contig maps of the rDNA regions. It was found that physical maps for the rDNA regions could not be readily constructed by fingerprint analysis, using one or two restriction enzymes. Additional data to fingerprints and/or different fingerprinting methods are needed to build contig maps for such highly tandem repetitive regions and thus, the physical map of the entire soybean genome.  相似文献   

17.
18.
As a new developmental vector system, the bacterial artificial chromosome (BAC) has been used widely in constructing genomic libraries and in generating transgenic animals. Isolation of the BAC insert end is useful to analyze the BAC clone. Here, we describe a fast and efficient method to obtain the BAC end by ligating the BAC fragments digested with Not I and another selected restriction enzyme into universal cloning vector, followed by determining the correct clones with HindIII digestion. Further DNA sequencing analysis verified the results mentioned above.  相似文献   

19.
20.
Genomic research in any organism encompasses understanding structure of the target genome and genes, their function, and evolution. Brassica rapa , which is phylogenetically related to Arabidopsis thaliana , is an important species with respect to its uses as vegetable, oil, and fodder. The availability of suitable genetic and genomic resources is a prerequisite to undertake genomic research in B. rapa . We have developed reference mapping populations of Chinese cabbage ( B. rapa ssp. pekinensis ) comprising 78 doubled haploid lines and over 250 recombinant inbred lines. Two Bacterial Artificial Chromosome (BAC) libraries, generated by restriction enzymes Hin dIII (KBrH) and Bam HI (KBrB), comprise 56 592 and 50 688 clones, respectively. We have also constructed 22 cDNA libraries from different plant tissues consisting of 104 914 clones with an average length of 575 bp. Initial BAC-end sequence analysis of 1473 clones of the KBrH library led us to understand the structure of B. rapa genome with respect to extent of genic sequences and their annotation, and relative abundance of different types of repetitive DNAs. Full-length sequence analysis of BAC clones revealed extensive triplication of B. rapa DNA segments coupled with variable gene losses within the segments. The formulation of the 'Multinational Brassica Genome Project' has laid the foundation to sequence the complete genome of B. rapa ssp. pekinensis by the international Brassica research community. It has been proposed to undertake BAC-to-BAC sequencing of genetically mapped seed BACs. In recent years, development of bioinformatics tools in Brassica has given a boost to structural genomics research in Brassica species. The research undertaken with the availability of various genomic resources in the public domain has added to our understanding of the structure of B. rapa .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号