首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Great differences in capability to detect bacteriophages from urban sewage of the area of Barcelona existed among 115 strains of Bacteroides fragilis. The capability of six of the strains to detect phages in a variety of feces and wastewater was studied. Strains HSP40 and RYC4023 detected similar numbers of phages in urban sewage and did not detect phages in animal feces. The other four strains detected phages in the feces of different animal species and in wastewater of both human and animal origin. Strain RYC2056 recovered consistently higher counts than the other strains and also detected counts ranging from 101 to approximately 103 phages per ml in urban sewage from different geographical areas. This strain detected bacteriophages in animal feces even though their relative concentration with respect to the other fecal indicators was significantly lower in wastewater polluted with animal feces than in urban sewage.  相似文献   

2.
The presence of F-specific phages in the diet of birds influenced the presence of these fecal indicators in their feces. F-specific phage concentrations in the feces of Canada geese and pigeons, which are normally low, increased greatly the same day coliphage MS2 was added to their diets. F-specific phage concentrations decreased to the original low levels a week after the phage-spiked feed was removed. Geese kept in pens that were cleaned regularly to reduce fecal-oral contamination had significantly lower somatic coliphage concentrations in their feces than wild geese had in their feces. Somatic coliphage concentrations in feces of feral pigeons were typically low with an occasional fecal sample having high numbers of either one of the two types of phages seen in this population of birds. Sometimes many birds had high numbers of only one type of phage in their feces. This lasted only a day and was probably due to fecal contamination of the feeding pans by the pigeons. The degree to which birds are a source of phage indicators of fecal pollution can change in a short period of time. Thus the presence of contaminated feeding sites should be considered before ruling out animals as a possible source of fecal indicators. F-specific phages may be useful tracers for modeling viral transmission and tracking feeding habits in birds. Journal of Industrial Microbiology & Biotechnology (2000) 24, 127–131. Received 06 July 1999/ Accepted in revised form 07 November 1999  相似文献   

3.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

4.
Vancomycin-resistant Enterococcus spp. (VRE) were isolated from sewage and chicken feces but not from other animal fecal sources (dog, cow, and pig) or from surface waters tested. VRE from hospital wastewater were resistant to ≥20 μg of vancomycin/ml and possessed the vanA gene. VRE from residential wastewater and chicken feces were resistant to 3 to 5 μg of vancomycin/ml and possessed the vanC gene.  相似文献   

5.
Great differences in capability to detect bacteriophages from urban sewage of the area of Barcelona existed among 115 strains of Bacteroides fragilis. The capability of six of the strains to detect phages in a variety of feces and wastewater was studied. Strains HSP40 and RYC4023 detected similar numbers of phages in urban sewage and did not detect phages in animal feces. The other four strains detected phages in the feces of different animal species and in wastewater of both human and animal origin. Strain RYC2056 recovered consistently higher counts than the other strains and also detected counts ranging from 10(1) to approximately 10(3) phages per ml in urban sewage from different geographical areas. This strain detected bacteriophages in animal feces even though their relative concentration with respect to the other fecal indicators was significantly lower in wastewater polluted with animal feces than in urban sewage.  相似文献   

6.
Intensive aquaculture conditions expose fish to bacterial infections, leading to significant financial losses, extensive antibiotic use and risk of antibiotic resistance in target bacteria. Flavobacterium columnare causes columnaris disease in aquaculture worldwide. To develop a bacteriophage-based control of columnaris disease, we isolated and characterized 126 F. columnare strains and 63 phages against F. columnare from Finland and Sweden in 2017. Bacterial isolates were virulent on rainbow trout (Oncorhynchus mykiss) and fell into four previously described genetic groups A, C, E and G, with genetic groups C and E being the most virulent. Phage host range studied against a collection of 227 bacterial isolates (from 2013 to 2017) demonstrated modular infection patterns based on host genetic group. Phages infected contemporary and previously isolated bacterial hosts, but bacteria isolated most recently were generally resistant to previously isolated phages. Despite large differences in geographical origin, isolation year or host range of the phages, whole-genome sequencing of 56 phages showed high level of genetic similarity to previously isolated F. columnare phages (Ficleduovirus, Myoviridae). Altogether, this phage collection demonstrates a potential for use in phage therapy.  相似文献   

7.
The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida.  相似文献   

8.
Bacteriophage populations in an activated-sludge sewage treatment plant were enumerated. A newly developed assay for quantitation of total phages, employing direct electron microscopic counts, was used in conjunction with the plaque assay. The total concentration of phages was significantly higher in reactor mixed liquor and effluent than in influent sewage, indicating a net production of phages within the reactor. Maximum total phage concentrations in the fluid phase of sewage, activated-sludge mixed liquor, and reactor effluent were 2.2 × 107, 9.5 × 107, and 8.4 × 107/ml, respectively. Conditions were optimized for isolation of predominant heterotrophic aerobic bacteria from sewage and mixed liquor. Blending at ice water temperatures was superior to ultrasound or enzyme treatments for maximum release of viable bacteria from microbial floc. A solidified extract of mixed liquor was superior to standard media for cultivating maximum numbers of heterotrophic bacteria. The highest culture counts for sewage and mixed liquor were 1.4 × 107 and 1.3 × 109/ml, respectively, which represented only 3 and 6.8% of the total microscopic cell counts. Only 3 out of 48 dominant bacterial isolates from either mixed liquor or sewage were hosts for phages present in the system. The sum of phage populations infecting these three hosts accounted for, at best, 3.8% (sewage) and 0.2% (mixed liquor) of the total number of phages present. Generally, specific phage titers were lower in mixed liquor than in sewage, indicating that these hosts were not responsible for the net production of phages in the reactor. This study emphasizes the limitations of the plaque assay for ecological studies of phages, and it suggests that bacteria responsible for phage production in activated-sludge mixed liquor are either minor components of the heterotrophic population, floc-producing strains, or members of other physiological groups.  相似文献   

9.
Microbial source tracking (MST) methods allow the identification of specific faecal sources. The aim is to detect the sources of faecal pollution in a water body to allow targeted, efficient and cost‐effective remediation efforts in the catchment. Bacteriophages infecting selected host strains of Bacteroides species are used as markers to track faecal contaminants in water. By using a suitable Bacteroides host from a given faecal origin, it is possible to specifically detect bacteriophages of this faecal origin. It can thus be used to detect specific phages of Bacteroides for MST. With this objective, we isolated several Bacteroides strains from pig, cow and poultry faeces by applying a previously optimized methodology used to isolate the host strains from humans. The isolated strains belonged to Bacteroides fragilis and Bacteroides thetaiotaomicron. These strains, like most Bacteroides species, detected phages of the Siphoviridae morphology. Using the newly isolated host strains for phage enumeration in a range of samples, we showed that these detect phages in faecal sources that coincide with their own origin (70–100% of the samples), and show no detection or very low percentages of detection of phages from other animal origins (from 0 to 20% of the samples). Only strains isolated from pig wastewater detected phages in 50% of human sewage samples. Nevertheless, those strains detecting phages from faecal origins other than their own detected fewer phages (2–3 log10 pfu·100 ml?1) than the phages detected by the specific strain of the same origin. On the basis of our results, we propose that faecal source tracking with phages infecting specific Bacteroides host strains is a useful method for MST. In addition, the method presented here is feasible in laboratories equipped with only basic microbiological equipment, it is more rapid and cost‐effective than other procedures and it does not require highly qualified staff.  相似文献   

10.
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. Previous studies have shown that high densities of free and infectious Stx phages are found in environments polluted with feces and also in food samples. Taken together, these two findings suggest that Stx phages could be excreted through feces, but this has not been tested to date. In this study, we purified Stx phages from 100 fecal samples from 100 healthy individuals showing no enteric symptoms. The phages retrieved from each sample were then quantified by quantitative PCR (qPCR). In total, 62% of the samples carried Stx phages, with an average value of 2.6 × 104 Stx phages/g. This result confirms the excretion of free Stx phages by healthy humans. Moreover, the Stx phages from feces were able to propagate in enrichment cultures of stx-negative Escherichia coli (strains C600 and O157:H7) and in Shigella sonnei, indicating that at least a fraction of the Stx phages present were infective. Plaque blot hybridization revealed lysis by Stx phages from feces. Our results confirm the presence of infectious free Stx phages in feces from healthy persons, possibly explaining the environmental prevalence observed in previous studies. It cannot be ruled out, therefore, that some positive stx results obtained during the molecular diagnosis of Shiga toxin-producing Escherichia coli (STEC)-related diseases using stool samples are due to the presence of Stx phages.  相似文献   

11.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

12.
Droppings from feral populations of pigeons, geese and herring gulls from the urban/suburban environment around Boston Harbor, MA, USA contained up to 106 somatic coliphages, 108 enterococci, 109 thermotolerant coliforms and 102 F-specific coliphages per gram of feces. Somatic coliphages, enterococci and thermotolerant coliforms were common in the feces of all three kinds of birds but F-specific coliphages were found in droppings from only three of 32 gulls. Thus these sources of bacterial and viral indicators should be considered when dealing with the ecology of fecal pollution indicators. Moreover, microbial indicators of fecal or sewage pollution originating from bird droppings may be mistaken for indicators that come from humans. This may cause an overestimate of the hazard from human pathogens in water and confound attempts to locate sources of fecal or sewage pollution. Received 12 May 1998/ Accepted in revised form 15 July 1998  相似文献   

13.
Vancomycin-resistant Enterococcus spp. (VRE) were isolated from sewage and chicken feces but not from other animal fecal sources (dog, cow, and pig) or from surface waters tested. VRE from hospital wastewater were resistant to > or =20 microg of vancomycin/ml and possessed the vanA gene. VRE from residential wastewater and chicken feces were resistant to 3 to 5 microg of vancomycin/ml and possessed the vanC gene.  相似文献   

14.
Summary The isolation of silver-resistant, silver-accumulating bacteria is reported. Following the screening of a number of environmental sources, silver-resistant Enterobacteriaceae were isolated from both sewage and photographic processing effluent. The level of resistance to silver and other heavy metals was determined for a selection of these isolates and, together with preliminary accumulation data derived from batch culture studies, one isolate, a strain of Citrobacter intermedius, was selected for further examination. The effect of silver concentration on batch culture growth of this organism was also investigated.  相似文献   

15.
【背景】由于滥用抗生素导致细菌耐药性日益严重。对于双歧杆菌,人们往往注重其益生功能的挖掘而忽视了对其耐药性的研究,存在一定的安全隐患。【目的】检测母婴肠道中假小链双歧杆菌的耐药性,探究婴儿肠道中假小链双歧杆菌耐药性的来源。【方法】利用微量肉汤稀释法测定48株分离自母婴肠道的假小链双歧杆菌对14种抗生素的耐药性,比较分离自不同家庭母婴肠道中假小链双歧杆菌的耐药性。【结果】48株母婴肠道分离株对四环素、氯霉素、新霉素、环丙沙星100%耐药,对其余10种抗生素耐药率依次为:卡那霉素98%、利福平80%、克林霉素78%、甲氧苄啶63%、红霉素59%、庆大霉素43%、链霉素16%、万古霉素14%、氨苄西林6%、利奈唑胺2%。母婴肠道分离株的耐药性无显著差异,分离自同一家庭母婴肠道的菌株具有相似的耐药表型。【结论】分离自母婴肠道的假小链双歧杆菌对多种抗生素具有耐药性,婴儿肠道中假小链双歧杆菌的耐药性可能是由母亲肠道垂直传递而来。  相似文献   

16.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Among the various bacterial pathogens associated with the aquaculture environment, Vibrio parahaemolyticus the important one from shrimp and human health aspects. Though having been around for several decades, phage-based control of bacterial pathogens (phage therapy) has recently re-emerged as an attractive alternative due to the availability of modern phage characterization tools and the global emergence of antibiotic-resistant bacteria. In the present study, a total of 12 V. parahaemolyticus specific phages were isolated from 264 water samples collected from inland saline shrimp culture farms. During the host range analysis against standard/field isolates of V. parahaemolyticus and other bacterial species, lytic activity was observed against 2.3–45.5% of tested V. parahaemolyticus isolates. No lytic activity was observed against other bacterial species. For genomic characterization, high-quality phage nucleic acid with concentrations ranging from 7.66 to 220 ng/µl was isolated from 9 phages. After digestion treatments with DNase, RNase and S1 nuclease, the nature of phage nucleic acid was determined as ssDNA and dsDNA for 7 and 2 phages respectively. During transmission electron microscopy analysis of phage V5, it was found to have a filamentous shape making it a member of the family Inoviridae. During efficacy study of phage against V. parahaemolyticus in shrimp, 78.1% reduction in bacterial counts was observed within 1 h of phage application. These results indicate the potential of phage therapy for the control of V. parahaemoyticus in shrimp.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-021-00934-6.  相似文献   

18.
The waste treatment facilities and final effluents of 11 meat-packing plants in the Province of Alberta were investigated primarily to determine the numbers of indicator bacteria and the presence of Salmonella. This was done to discover the efficiency of the treatment systems presently in operation in reducing bacterial numbers and to establish the need for disinfection and for bacterial standards for these effluents. Data obtained showed that the final effluents were of very poor quality bacteriologically, with numbers of indicator organisms comparable to those found in raw sewage. Primary treatment facilities were ineffective in reducing the numbers of these bacteria. The secondary treatment facility investigated achieved greater than a 99% reduction of indicator bacteria. Salmonella were isolated from the final effluents of 78% of the plants, including the plant using secondary treatment. In total, 21 Salmonella serotypes were isolated. Salmonella isolates were not antibiotic resistant, but certain coliform and fecal coliform isolates demonstrated resistance to chloramphenicol, tetracycline, and ampicillin.  相似文献   

19.
A study was conducted to determine the reliability and repeatability of antibiotic resistance analysis as a method of identifying the sources of fecal pollution in surface water and groundwater. Four large sets of isolates of fecal streptococci (from 2,635 to 5,990 isolates per set) were obtained from 236 samples of human sewage and septage, cattle and poultry feces, and pristine waters. The patterns of resistance of the isolates to each of four concentrations of up to nine antibiotics were analyzed by discriminant analysis. When isolates were classified individually, the average rate of correct classification (ARCC) into four possible types (human, cattle, poultry, and wild) ranged from 64 to 78%. When the resistance patterns of all isolates from each sample were averaged and the resulting sample-level resistance patterns were classified, the ARCCs were much higher (96 to 100%). These data confirm that there are measurable and consistent differences in the antibiotic resistance patterns of fecal streptococci isolated from various sources of fecal pollution and that antibiotic resistance analysis can be used to classify and identify these sources.  相似文献   

20.
The phylogenetic and physiological characteristics of mesophilic and thermophilic bacteria isolated from a field-scale sewage sludge composter were determined by 16S rDNA and phenotype analyses. Of the 34 mesophilic isolates, 5 (15%), 16 (47%), and 3 (9%) displayed amylase, protease, and lipase activities, respectively. Among these isolates, the following species were identified based on their 16S rRNA gene sequences: Aneurinibacillus aneurinilyticus, Bacillus fortis, Bacillus subtilis, Brachybacterium paraconglomeratum, Brevibacterium otitidis, Dietzia maris, Pseudomonas xiamenensis, Staphylococcus lentus, Thermobifida fusca, Ureibacillus thermosphaericus, and Vagococcus lutrae. However, 15 isolates could not be identified as known taxa, thus indicating new bacterial taxa. Of these new taxa, it is likely that NoID A plays an important role in organic matter decomposition during composting based on its physiological characteristics. Sapporo sewage sludge compost contains a microbial ecosystem with novel bacterial biodiversity, comprising a high percentage of previously unrecognized species. This study improves our knowledge of the unique bacteria in sewage sludge compost, providing a future resource for bacterial genetic information and bacterial species of agricultural benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号