首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This short review deals with our investigations in neuroendocrine tumors (NETs) with antibodies against defined epitopes of chromogranins (Cgs) A and B and secretogranins (Sgs) II and III. The immunohistochemical expression of different epitopes of the granin family of proteins varies in NE cells in normal human endocrine and non-endocrine organs and in NETs, suggesting post-translational processing. In most NETs one or more epitopes of the granins were lacking, but variations in the expression pattern occurred both in benign and malignant NETs. A few epitopes displayed patterns that may be valuable in differentiating between benign and malignant NET types, e.g., well-differentiated NET types expressed more CgA epitopes than the poorly differentiated ones and C-terminal secretoneurin visualized a cell type related to malignancy in pheochromocytomas. Plasma concentrations of different epitopes of CgA and CgB varied. In patients suffering from carcinoid tumors or endocrine pancreatic tumors the highest concentrations were found with epitopes from the mid-portion of CgA. For CgB the highest plasma concentrations were recorded for the epitope 439–451. Measurements of SgII showed that patients with endocrine pancreatic tumors had higher concentrations than patients with carcinoid tumors or pheochromocytomas. SgIII was not detectable in patients with NETs.  相似文献   

2.
OBJECTIVE: CgA has been shown to be an excellent marker for neuroendocrine tumours. However, there are two major drawbacks with CgA measurements; elevated levels are common in patients with decreased renal function and in patients on treatment with proton pump inhibitors. These problems are not seen with CgB measurements. We have recently presented the development of 13 region-specific radioimmunoassays for measurements of CgB. A region-specific assay was identified, which measured higher concentrations of CgB than the other assays and seemed to be very useful as a marker for neuroendocrine tumours. The aim of the present study was therefore to further explore the diagnostic potential of this assay in the clinical management of patients with neuroendocrine tumours. METHODS: Measurements of CgB with two methods were compared with CgA in plasma samples from patients investigated for neuroendocrine tumours (N=86), patients with decreased renal function (N=35) and patients on treatment with proton pump inhibitors (N=29). RESULTS: The diagnostic sensitivity for the new CgB assay was almost as good as that for CgA. Furthermore, with CgB measurements we could avoid the falsely elevated levels of CgA found in patients with decreased renal function and treatment with proton pump inhibitors. CONCLUSIONS: We conclude that the new CgB assay can serve as a complement to CgA measurements as an important tumour marker for neuroendocrine tumours.  相似文献   

3.
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.  相似文献   

4.
In order to obtain further insights into the expression of the known markers of secretory neuroendocrine dense core organelles, secretogranin II (SgII), chromogranin A (CgA), and chromogranin B (CgB) during neuronal differentiation, the immunolocalization of these proteins was studied by means of double immunofluorescence in both undifferentiated and retinoic acid-differentiated SH-SY5Y human neuroblastoma cells. The majority of undifferentiated cells was not immunolabeled for all three proteins. In the majority of differentiated cells, a clearly punctate SgII immunolabeling indicative of the presence of secretory organelles was present in the Golgi region, at the cell periphery, along the neurites and in growth cones. Only relatively few of the SgII-immunolabeled cells were also immunolabeled for CgA and CgB, and in a single cell the three proteins were not always present in the same organelles. These results, obtained in a cultured cell line, confirm the not necessarily parallel distribution of SgII, CgA, and CgB observed in different neuroendocrine tissues and suggest that SgII may be the best marker of human neuroblastoma cell differentiation.  相似文献   

5.
Abstract: Chromogranins and secretogranins are acidic secretory proteins of unknown function that represent major constituents of neuroendocrine secretory granules. Using a differential screening strategy designed to identify genes involved in peptide hormone biosynthesis and secretion, we have isolated cDNA clones encoding the first nonmammalian homologues of secretogranin II (SgII) and secretogranin III (SgIII) from a Xenopus intermediate pituitary cDNA library. A comparative analysis of the Xenopus and mammalian proteins revealed a striking regional conservation with an overall sequence identity of 48% for SgII and 61% for SgIII. One of the highly conserved and thus potentially functional domains in SgII corresponds to the bioactive peptide secretoneurin. However, in SgII and especially in SgIII, a substantial portion of the potential dibasic cleavage sites is not conserved, arguing against the idea that these granins serve solely as peptide precursors. Moreover, SgIII contains a conserved and repeated motif (DSTK) that is reminiscent of a repeat present in the trans -Golgi network integral membrane proteins TGN38 and TGN41, a finding more consistent with an intracellular function for this protein. When Xenopus intermediate pituitary cells were stimulated in vivo, the mRNA levels of SgII and SgIII increased dramatically (15- and 35-fold, respectively) and in parallel with that of the prohormone proopiomelanocortin (30-fold increase). Our results indicate that the process of peptide hormone production and release in a neuroendocrine cell involves multiple members of the granin family.  相似文献   

6.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

7.
Y Cetin  D Grube 《Histochemistry》1990,94(5):479-484
The chromogranins are acidic proteins present in various endocrine cells and organs. They consist of chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). In the pancreas, these proteins or their breakdown products are possibly involved in the regulation of pancreatic hormone secretion. The guinea-pig endocrine pancreas was now investigated immunohistochemically for the presence of the chromogranins in five endocrine cell types. CgA is a regular constituent of insulin (B-), pancreatic polypeptide (PP-) and enterochromaffin (EC-) cells. In addition, a minority of somatostatin (D-) cells were immunoreactive for CgA. CgB immunoreactivities were very faint and exclusively observed in B-cells. SgII was found in B- and PP-cells; a faint immunostaining for SgII was also seen in a few glucagon (A-) cells. Typically, the densities of CgA or SgII immunoreactivities varied among the members of a given cell population, e.g. among individual B- or PP-cells. The present findings about the heterogeneities of immunoreactivities for the chromogranins are in line with findings obtained in pancreatic endocrine cells of other species. The true reasons for these heterogeneities are enigmatic. It seems probable, however, that the corresponding immunoreactivities depend on the intracellular processing of the chromogranins which in turn might be related to the metabolic state of endocrine cells. This has to be examined in future by experimental investigations.  相似文献   

8.
Summary The chromogranins are acidic proteins present in various endocrine cells and organs. They consist of chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). In the pancreas, these proteins or their breakdown products are possibly involved in the regulation of pancreatic hormone secretion. The guinea-pig endocrine pancreas was now investigated immunohistochemically for the presence of the chromogranins in five endocrine cell types. CgA is a regular constituent of insulin (B-), pancreatic polypeptide (PP-) and enterochromaffin (EC-) cells. In addition, a minority of somatostatin (D-) cells were immunoreactive for CgA. CgB immunoreactivities were very faint and exclusively observed in B-cells. SgII was found in B- and PP-cells; a faint immunostaining for SgII was also seen in a few glucagon (A-) cells. Typically, the densities of CgA or SgII immunoreactivities varied among the members of a given cell population, e.g. among individual B- or PP-cells. The present findings about the heterogeneities of immunoreactivities for the chromogranins are in line with findings obtained in pancreatic endocrine cells of other species. The true reasons for these heterogeneities are enigmatic. It seems probable, however, that the corresponding immunoreactivities depend on the intracellular processing of the chromogranins which in turn might be related to the metabolic state of endocrine cells. This has to be examined in future by experimental investigations.  相似文献   

9.
INTRODUCTION: The primary structure of human chromogranin B (CgB) contains 15 pairs of basic amino acids, which are potential cleavage sites for specific endogenous proteases, but also other sites in the molecule can be subjected to cleavage. Several CgB-related peptides have been identified in tissue extracts. MATERIALS AND METHODS: Peptides homologous to defined parts of the human CgB molecule were selected and synthesized. Antibodies were raised and 13 specific radioimmunoassays were developed. Plasma samples from 19 patients with neuroendocrine tumors were collected and measured in all assays. RESULTS: All region-specific assays measured circulating levels of CgB-related peptides. Only five of the assays measured high concentrations of circulating CgB and two of them correlated with that of intact chromogranin A (CgA). CONCLUSION: The assays presented allow measurements of defined regions of CgB and will thus become important tools for further studies of the processing of CgB. One of the assays merit further investigations as a new marker for neuroendocrine tumors.  相似文献   

10.
Granin-family proteins, including chromogranin A (CgA) and secretogranin III (SgIII), are transported to secretory granules (SGs) in neuroendocrine cells. We previously showed that SgIII binds strongly to CgA in an intragranular milieu and targets CgA to SGs in pituitary and pancreatic endocrine cells. In this study, we demonstrated that with a sucrose density gradient of rat insulinoma-derived INS-1 cell homogenates, SgIII was localized to the SG fraction and was fractionated to the SG membrane (SGM) despite lacking the transmembrane region. With depletion of cholesterol from the SGM using methyl-beta-cyclodextrin, SgIII was impaired to bind to the SGM. Both SgIII and CgA were solubilized from the SGM by Triton X-100 in contrast to the Triton X-100 insolubility of carboxypeptidase E. SgIII and carboxypeptidase E strongly bound to the SGM-type liposome in intragranular conditions, but CgA did not. Instead, CgA bound to the SGM-type liposome only in the presence of SgIII. Immunocytochemical and pulse-chase experiments revealed that SgIII deleting the N-terminal lipid-binding region missorted to the constitutive pathway in mouse corticotroph-derived AtT-20 cells. Thus, we suggest that SgIII directly binds to cholesterol components of the SGM and targets CgA to SGs in pituitary and pancreatic endocrine cells.  相似文献   

11.
INTRODUCTION: The primary structure of human chromogranin A (CgA) not only contains 10 pairs of basic amino acids, which are potential cleavage sites for specific endogenous proteases, but also other sites in the molecule can be subjected to cleavage. Several CgA-related peptides have been identified in tissue, and many of the biological effects attributed to CgA seem to be mediated by these peptides. MATERIALS AND METHODS: Peptides homologous to defined parts of the human CgA molecule were selected and synthesised. Antibodies were raised, and 11 specific radioimmunoassays were developed. Plasma samples from 20 patients with neuroendocrine tumours were collected and measured in all assays. RESULTS: All assays measured circulating levels of CgA-derived peptides. Only four of the assays measured concentrations that correlated with that of total CgA. However, concentrations of the individual CgA-related peptides were generally lower than the concentration of total CgA. Different neuroendocrine tumours seem to process CgA differently. The ratio between a given region-specific assay and total CgA is inversely correlated to tumour activity. CONCLUSION: The assays presented allow measurements of defined regions of CgA and will thus become important tools for further studies of processing of CgA.  相似文献   

12.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

13.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

14.
Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

15.
Summary Chromogranins (Cg)/secretogranins (Sg) are representative acidic glycoproteins in secretory granules of many endocrine cells where they are co-stored and co-released with resident amines or peptides. The exact distribution of these proteins in the rat anterior pituitary is unknown. Therefore, pituitaries from untreated male rats were investigated by light- and electron-microscopical immunocytochemistry for the cellular and subcellular localization of CgA, CgB, and SgII. Endocrine cells, identified light-microscopically as gonadotrophs in adjacent semithin sections immunostained for follicle-stimulating hormone (FSH) and luteinizing hormone (LH), concomitantly were immunoreactive for CgA, CgB, and SgII. Ultrastructurally, gonadotrophs exhibited two types of secretory granules which varied in their immunoreactivities for gonadotropins and Cg/Sg. Large-sized (500 nm), moderately electron-dense granules showed antigenicities for FSH, LH, and CgA. Smaller-sized (200 nm), electron-dense granules were immunoreactive exclusively for LH and SgII. The distinct localization of CgA and SgII to morphologically and hormonally different secretory granules indicates the existence of two regulated secretory pathways in rat pituitary gonadotrophs. Hence, these proteins are considered as valuable tools to analyze the intracellular trafficking during granule biogenesis and the possible different regulation of FSH and LH secretion.  相似文献   

16.
Prohormone convertases PC1 and PC2 are endoproteases involved in prohormone cleavage at pairs of basic amino acids. There is a report that prohormone convertase exists in the rat anterior pituitary gonadotrophs, where it had previously been considered that proprotein processing does not take place. In addition to luteinizing hormone and follicle-stimulating hormone, rat pituitary gonadotrophs contain chromogranin A (CgA) and secretogranin II (SgII), two members of the family of granin proteins, which have proteolytic sites in their molecules. In the present study we examined whether there is a close correlation between subcellular localization of prohormone convertases and granin proteins. Ultrathin sections of rat anterior pituitary were immunolabeled with anti-PC1 or -PC2 antisera and then stained with immunogold. Immunogold particles for PC1 were exclusively found in large, lucent secretory granules, whereas those for PC2 were seen in both large, lucent and small, dense granules. The double-immunolabeling also demonstrated colocalization of PC2 and SgII in small, dense granules and of PC1, PC2, and CgA in large, lucent granules. These immunocytochemical results suggest that PC2 may be involved in the proteolytic processing of SgII and that both PC1 and PC2 may be necessary to process CgA.  相似文献   

17.
Chromogranin B (CgB, also called secretogranin I) is a secretory protein sorted to secretory granules in a wide variety of endocrine cells and neurons. Unexpectedly, after stimulation of regulated secretion in the neuroendocrine cell line PC12, a fraction of the exocytosed CgB was not released into the medium but remained associated with the plasma membrane. The addition of exogenous CgB to unstimulated cells did not result in the appearance of cell surface CgB, suggesting that the presence of cell surface CgB could not be accounted for by adsorption of released CgB to the cell surface. Upon further incubation of stimulated PC12 cells, the surface CgB was internalized by the cells and largely degraded. The surface CgB was not released by exposure to pH 11, yet it partitioned in the aqueous phase upon Triton X-114 phase separation. Subcellular fractionation and differential extraction studies showed that the membrane-associated CgB constituted at least 10% of the total cellular CgB. These observations suggest that (a) the appearance of CgB at the cell surface is due to fusion of secretory granules with the plasma membrane and (b) a fraction of CgB is present in tight association with the secretory granule membrane. We propose a model in which membrane-associated CgB, by virtue of its ability to interact in a homophilic manner with soluble CgB, plays a key role in the sorting and targeting of CgB to the regulated pathway.  相似文献   

18.
The expression of secretogranin III (SgIII) in chicken endocrine cells has not been investigated. There is limited data available for the immunohistochemical localization of SgIII in the brain, pituitary, and pancreatic islets of humans and rodents. In the present study, we used immunoblotting to reveal the similarities between the expression patterns of SgIII in the common endocrine glands of chickens and rats. The protein–protein interactions between SgIII and chromogranin A (CgA) mediate the sorting of CgA/prohormone core aggregates to the secretory granule membrane. We examined these interactions using co-immunoprecipitation in chicken endocrine tissues. Using immunohistochemistry, we also examined the expression of SgIII in a wide range of chicken endocrine glands and gastrointestinal endocrine cells (GECs). SgIII was expressed in the pituitary, pineal, adrenal (medullary parts), parathyroid, and ultimobranchial glands, but not in the thyroid gland. It was also expressed in GECs of the stomach (proventriculus and gizzard), small and large intestines, and pancreatic islet cells. These SgIII-expressing cells co-expressed serotonin, somatostatin, gastric inhibitory polypeptide, glucagon-like peptide-1, glucagon, or insulin. These results suggest that SgIII is expressed in the endocrine cells that secrete peptide hormones, which mature via the intragranular enzymatic processing of prohormones and physiologically active amines in chickens.  相似文献   

19.
The effects of brefeldin A (BFA) on membrane traffic between the trans-Golgi network (TGN) and the plasma membrane were investigated in intact PC12 cells and in a cell-free system derived from PC12 cells. In intact cells, BFA caused a virtually complete block of constitutive secretion, as indicated by the lack of release from, and accumulation in, the cells of a [35S]sulfate-labeled heparan sulfate proteoglycan (hsPG). Pulse-chase experiments with [35S]sulfate followed by subcellular fractionation showed that this block was due to the inhibition of formation of constitutive secretory vesicles (CSVs) from the TGN. BFA did not block the depolarization-induced release of [35S]sulfate-labeled chromogranin B (CgB) and secretogranin II (SgII) from secretory granules formed prior to the addition of the drug, showing that BFA does not block secretory granule fusion with the plasma membrane. The presence of BFA did, however, prevent the appearance of [35S]sulfate-labeled CgB and SgII in secretory granules, indicating that the drug inhibits the formation of secretory granules from the TGN. Evidence for a direct block of vesicle formation by BFA was obtained using a cell-free system derived from [35S]sulfate-labeled PC12 cells. In this system, low concentrations of BFA (5 micrograms/ml) inhibited the formation of the hsPG-containing CSVs and that of the SgII-containing secretory granules from the TGN to the same extent (50-60%) as, and in a non-additive manner with, the nonhydrolyzable GTP analogue GTP gamma S. Consistent with the inhibitory effects of BFA on vesicle formation from the TGN, BFA treatment of intact PC12 cells led to the hypersialylation of CgB, which presumably was due to the increased residence time of the protein in the TGN. In conclusion, our data are consistent with, and allow the generalization of, the concept that the BFA-induced block of anterograde membrane traffic results from the inhibition of vesicle formation from a donor compartment.  相似文献   

20.
The chromogranins/secretogranins are a family of neuroendocrine vesicle secretory proteins. Immunohistology and immunoblotting have suggested that a major soluble protein in human chromaffin granules may be chromogranin B (CgB). We purified from pheochromocytoma chromaffin granules an SDS-PAGE 110-120 kDa protein whose N-terminal sequence matched that previously deduced from a human CgB cDNA. An antibody directed against a synthetic human CgB N-terminal region specifically recognized the CgB N-terminus, though not the chromogranin A (CgA) N-terminus or the CgB C-terminus on immunoblots. An antiserum directed against CgB's C-terminus also visualized CgB but not CgA. By immunoblotting, CgB was a quantitatively major protein in human pheochromocytoma chromaffin granules, but a relatively minor in normal bovine adrenal medullary chromaffin granules. In a variety of normal bovine neuroendocrine tissues, the relative abundance of CgB immunoreactivity on immunoblots was: adrenal medulla greater than anterior pituitary greater than pancreas greater than small intestine, hypothalamus. Immunoblotting of neuroendocrine tissues (or their hormone storage vesicle cores) with both anti N-terminal and anti C-terminal CgB antisera suggested bidirectional cleavage or processing of CgB; in the anterior pituitary, a unique 40 kDa C-terminal fragment was observed. Bidirectional CgB cleavage was also suggested on immunoblots of chromaffin tissue from three species (human, bovine, rat). C-terminal processing of CgB was also confirmed by amino acid sequencing of SDS-PAGE-separated, polyvinylidene difluoride membrane-immobilized CgB fragments from pheochromocytoma chromaffin granules. Whether such fragments possess biological activity remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号