首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The folding dynamics of proteins at the single-molecule level has been studied with single-molecule force spectroscopy experiments for 20 years, but a common standardized method for the analysis of the collected data and for sharing among the scientific community members is still not available. We have developed a new open-source tool—Fodis—for the analysis of the force-distance curves obtained in single-molecule force spectroscopy experiments, providing almost automatic processing, analysis, and classification of the obtained data. Our method provides also a classification of the possible unfolding pathways and the structural heterogeneity present during the unfolding of proteins.  相似文献   

2.
原子力显微镜单分子力谱研究生物分子间相互作用   总被引:2,自引:0,他引:2  
原子力显微镜单分子力谱是近年来发展起来的能在单分子水平研究生物分子相互作用的新工具。本文综述了单分子力谱的测定原理、方法及其在研究蛋白.蛋白、蛋白-DNA相互作用,蛋白质去折叠和活细胞上配体/受体结合中的应用进展。  相似文献   

3.

Background

Single-molecule force spectroscopy (SMFS) is a technique that measures the force necessary to unfold a protein. SMFS experiments generate Force-Distance (F-D) curves. A statistical analysis of a set of F-D curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and inter- and intra-molecular interactions can be derived.

Results

In the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR). We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks. Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR's unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases.

Conclusions

Our algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results.  相似文献   

4.
Statistical analyses of forced unfolding data for protein tandems, i.e., unfolding forces (force-ramp) and unfolding times (force-clamp), used in single-molecule dynamic force spectroscopy rely on the assumption that the unfolding transitions of individual protein domains are independent (uncorrelated) and characterized, respectively, by identically distributed unfolding forces and unfolding times. In our previous work, we showed that in the experimentally accessible piconewton force range, this assumption, which holds at a lower constant force, may break at an elevated force level, i.e., the unfolding transitions may become correlated when force is increased. In this work, we develop much needed statistical tests for assessing the independence of the unobserved forced unfolding times for individual protein domains in the tandem and equality of their parent distributions, which are based solely on the observed ordered unfolding times. The use and performance of these tests are illustrated through the analysis of unfolding times for computer models of protein tandems. The proposed tests can be used in force-clamp atomic force microscopy experiments to obtain accurate information on protein forced unfolding and to probe data on the presence of interdomain interactions. The order statistics-based formalism is extended to cover the analysis of correlated unfolding transitions. The use of order statistics leads naturally to the development of new kinetic models, which describe the probabilities of ordered unfolding transitions rather than the populations of chemical species.  相似文献   

5.
Recent advances in atomic force microscopy allowed globular and membrane proteins to be mechanically unfolded on a single-molecule level. Presented is an extension to the existing force spectroscopy experiments. While unfolding single bacteriorhodopsins from native purple membranes, small oscillation amplitudes (6-9 nm) were supplied to the vertical displacement of the cantilever at a frequency of 3 kHz. The phase and amplitude response of the cantilever-protein system was converted to reveal the elastic (conservative) and viscous (dissipative) contributions to the unfolding process. The elastic response (stiffness) of the extended parts of the protein were in the range of a few tens pN/nm and could be well described by the derivative of the wormlike chain model. Discrete events in the viscous response coincided with the unfolding of single secondary structure elements and were in the range of 1 microNs/m. In addition, these force modulation spectroscopy experiments revealed novel mechanical unfolding intermediates of bacteriorhodopsin. We found that kinks result in a loss of unfolding cooperativity in transmembrane helices. Reconstructing force-distance spectra by the integration of amplitude-distance spectra verified their position, offering a novel approach to detect intermediates during the forced unfolding of single proteins.  相似文献   

6.
Many F-actin crosslinking proteins consist of two actin-binding domains separated by a rod domain that can vary considerably in length and structure. In this study, we used single-molecule force spectroscopy to investigate the mechanics of the immunoglobulin (Ig) rod domains of filamin from Dictyostelium discoideum (ddFLN). We find that one of the six Ig domains unfolds at lower forces than do those of all other domains and exhibits a stable unfolding intermediate on its mechanical unfolding pathway. Amino acid inserts into various loops of this domain lead to contour length changes in the single-molecule unfolding pattern. These changes allowed us to map the stable core of approximately 60 amino acids that constitutes the unfolding intermediate. Fast refolding in combination with low unfolding forces suggest a potential in vivo role for this domain as a mechanically extensible element within the ddFLN rod.  相似文献   

7.
High-speed atomic force microscopy (HS-AFM) is becoming a reference tool for the study of dynamic biological processes. The spatial and time resolutions of HS-AFM are on the order of nanometers and milliseconds, respectively, and allow structural and functional characterization of biological processes at the single-molecule level. In this work we present contact-mode HS-AFM movies of purple membranes containing two-dimensional arrays of bacteriorhodopsin (bR). In high-resolution movies acquired at a 100 ms frame acquisition time, the substructure on individual bR trimers was visualized. In regions in between different bR arrays, dynamic topographies were observed and interpreted as motion of the bR trimers. Similarly, motion of bR monomers in the vicinity of lattice defects in the purple membrane was observed. Our findings indicate that the bR arrays are in a mobile association-dissociation equilibrium. HS-AFM on membranes provides novel perspectives for analyzing the membrane diffusion processes of nonlabeled molecules.  相似文献   

8.
Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.  相似文献   

9.
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.  相似文献   

10.
The protein folding process is described as diffusion on a high-dimensional energy landscape. Experimental data showing details of the underlying energy surface are essential to understanding folding. So far in single-molecule mechanical unfolding experiments a simplified model assuming a force-independent transition state has been used to extract such information. Here we show that this so-called Bell model, although fitting well to force velocity data, fails to reproduce full unfolding force distributions. We show that by applying Kramers' diffusion model, we were able to reconstruct a detailed funnel-like curvature of the underlying energy landscape and establish full agreement with the data. We demonstrate that obtaining spatially resolved details of the unfolding energy landscape from mechanical single-molecule protein unfolding experiments requires models that go beyond the Bell model.  相似文献   

11.
Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems. Here we present protocols for force spectroscopy of living cells, including cell sample preparation, tip chemistry, step-by-step AFM imaging, force spectroscopy and data analysis. We also delineate critical steps and describe limitations that we have experienced. The entire protocol can be completed in 12 h. The model studies discussed here demonstrate the power of AFM for studying transmembrane transporters at the single-molecule level.  相似文献   

12.
Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.  相似文献   

13.
Protecting osmolytes are widespread small organic molecules able to stabilize the folded state of most proteins against various denaturing stresses in vivo. The osmophobic model explains thermodynamically their action through a preferential exclusion of the osmolyte molecules from the protein surface, thus favoring the formation of intrapeptide hydrogen bonds. Few works addressed the influence of protecting osmolytes on the protein unfolding transition state and kinetics. Among those, previous single molecule force spectroscopy experiments evidenced a complexation of the protecting osmolyte molecules at the unfolding transition state of the protein, in apparent contradiction with the osmophobic nature of the protein backbone. We present single-molecule evidence that glycerol, which is a ubiquitous protecting osmolyte, stabilizes a globular protein against mechanical unfolding without binding into its unfolding transition state structure. We show experimentally that glycerol does not change the position of the unfolding transition state as projected onto the mechanical reaction coordinate. Moreover, we compute theoretically the projection of the unfolding transition state onto two other common reaction coordinates, that is, the number of native peptide bonds and the weighted number of native contacts. To that end, we augment an analytic Ising-like protein model with support for group-transfer free energies. Using this model, we find again that the position of the unfolding transition state does not change in the presence of glycerol, giving further support to the conclusions based on the single-molecule experiments.  相似文献   

14.
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).  相似文献   

15.
The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR.  相似文献   

16.
Technical challenges have greatly impeded the investigation of membrane protein folding and unfolding. To develop a new tool that facilitates the study of membrane proteins, we tested pulse proteolysis as a probe for membrane protein unfolding. Pulse proteolysis is a method to monitor protein folding and unfolding, which exploits the significant difference in proteolytic susceptibility between folded and unfolded proteins. This method requires only a small amount of protein and, in many cases, may be used with unpurified proteins in cell lysates. To evaluate the effectiveness of pulse proteolysis as a probe for membrane protein unfolding, we chose Halobacterium halobium bacteriorhodopsin (bR) as a model system. The denaturation of bR in SDS has been investigated extensively by monitoring the change in the absorbance at 560 nm (A560). In this work, we demonstrate that denaturation of bR by SDS results in a significant increase in its susceptibility to proteolysis by subtilisin. When pulse proteolysis was applied to bR incubated in varying concentrations of SDS, the remaining intact protein determined by electrophoresis shows a cooperative transition. The midpoint of the cooperative transition (Cm) shows excellent agreement with that determined by A560. The Cm values determined by pulse proteolysis for M56A and Y57A bRs are also consistent with the measurements made by A560. Our results suggest that pulse proteolysis is a quantitative tool to probe membrane protein unfolding. Combining pulse proteolysis with Western blotting may allow the investigation of membrane protein unfolding in situ without overexpression or purification.  相似文献   

17.
Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins.  相似文献   

18.
《Biophysical journal》2020,118(3):667-675
Precise quantification of the energetics and interactions that stabilize membrane proteins in a lipid bilayer is a long-sought goal. Toward this end, atomic force microscopy has been used to unfold individual membrane proteins embedded in their native lipid bilayer, typically by retracting the cantilever at a constant velocity. Recently, unfolding intermediates separated by as few as two amino acids were detected using focused-ion-beam-modified ultrashort cantilevers. However, unambiguously discriminating between such closely spaced states remains challenging, in part because any individual unfolding trajectory only occupies a subset of the total number of intermediates. Moreover, structural assignment of these intermediates via worm-like-chain analysis is hindered by brief dwell times compounded with thermal and instrumental noise. To overcome these issues, we moved the cantilever in a sawtooth pattern of 6–12 nm, offset by 0.25–1 nm per cycle, generating a “zigzag” force ramp of alternating positive and negative loading rates. We applied this protocol to the model membrane protein bacteriorhodopsin (bR). In contrast to conventional studies that extract bR’s photoactive retinal along with the first transmembrane helix, we unfolded bR in the presence of its retinal. To do so, we introduced a previously developed enzymatic-cleavage site between helices E and F and pulled from the top of the E helix using a site-specific, covalent attachment. The resulting zigzag unfolding trajectories occupied 40% more states per trajectory and occupied those states for longer times than traditional constant-velocity records. In total, we identified 31 intermediates during the unfolding of five helices of EF-cleaved bR. These included a previously reported, mechanically robust intermediate located between helices C and B that, with our enhanced resolution, is now shown to be two distinct states separated by three amino acids. Interestingly, another intermediate directly interacted with the retinal, an interaction confirmed by removing the retinal.  相似文献   

19.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

20.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号