首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlorophyll-protein complexes of the wild type and 16 strainsof chlorina mutants of rice were investigated by gel electrophoresis.An antenna chlorophyll a/b-protein of photosystem II (LHC-II)was present in reduced amounts in Type II chlorina mutants whichhave the chlorophyll a/b ratios of 10–15, and was totallyabsent from Type I chlorina mutants which lack chlorophyll b.Another antenna chlorophyll-protein of photosystem I (LHC-I)containing two polypeptides of 20 and 21 kDa was also presentin the Type II mutants but not in the Type I mutants. The polypeptideprofiles of the thylakoid membranes indicate that Type I mutantslack both the 20 and 21 kDa polypeptides, whereas the abundanceof the two polypeptides relative to the CPI apoprotein in theType II mutants is comparable with that in the wild type. Itis concluded that the 20 and 21 kDa polypeptides are both relatedto LHC-I and are normally synthesized and accumulated in theType II mutants. (Received June 6, 1985; Accepted August 6, 1985)  相似文献   

2.
A chlorophyll (a + b)--protein complex associated with photosystem I (PSI) was isolated from a larger PSI complex (CPIa) produced by electrophoresis of barley thylakoids solubilized with 300 mM octyl glucoside. It had an apparent Mr of 35,000-43,000 on 7.5% and 10% acrylamide gels respectively, and a chlorophyll a/b ratio of 2.5 +/- 1.5. Denaturation released four polypeptides migrating between 21-24 kDa. They were well separated from the polypeptides of the two photosystem II chlorophyll a + b antenna complexes: LHCII (25-27 kDa) and CP29 (28-29 kDa). In order to study the PSI antenna complex, antibodies were raised against highly purified CPIa. The antigen appeared to be pure when electrophoresed, blotted and reacted with its antiserum, i.e. anti-CPIa detected only the 64-66-kDa CPI apoprotein and the four 21-24 kDa antenna polypeptides. However, when blotted against the whole spectrum of thylakoid proteins, it cross-reacted with both LHCII and CP29 apoproteins. Removal of anti-CPI activity from the anti-CPIa did not affect these cross-reactions, showing that they were not due to antibodies directed against CPI. To show that the same antibody population was reacting with both the photosystem I and photosystem II antenna polypeptides, anti-CPIa was adsorbed onto highly purified CPIa on nitrocellulose. The bound antibody was eluted and used again in a Western blot against whole thylakoid proteins. This selected antibody population showed the same relative strength of reaction with photosystem I and photosystem II antenna polypeptides as the original antibody population had. Similar observations have been made with antibodies to the two photosystem II antenna complexes. We therefore conclude that there are antigenic determinants in common among the chlorophyll a + b binding polypeptides, and predict that there could be amino acid sequence similarities.  相似文献   

3.
Ten rice chlorina mutants of Type I, which totally lack chlorophyllb and hence are unable to synthesize light-harvesting chlorophylla/b protein complexes of photosystem II (LHC-II), containedmRNA for proteins related to LHC-II. Immunoblotting with anantiserum, which had been raised against the 24 and 25 kDa apoproteinsof LHC-II and found to cross-react with the 26 kDa protein ofLHC-II and the 20 and 21 kDa apoproteins of light-harvestingchlorophyll a/b protein complexes of photosystem I (LHC-I),revealed that all the five proteins related to LHC-Iand LHC-IIwere present in reduced amounts in the Type I mutants. ThreeType HA mutants, which have a chlorophyll a/b ratio of 10, weremore abundant in the apoproteins, while three Type IIB mutantswith the ratio of 15 were heterogeneous in terms of the apoproteincontent. All the chlorina mutants contained less P700 comparedwith the wild type rice, but were relatively more abundant inthe LHC-I proteins than the LHC-II proteins. The results showthat all the rice chlorina strains are mutants of chlorophyllb synthesis and the deficiency of chlorophyll b differentlyaffects accumulation of the apoproteins of LHC-I and LHC-II.To balance light absorption between the two photosystem, lossof LHC-II is partly counter-balanced by a decrease in the numberof PSI complexes in the mutants. (Received January 21, 1988; Accepted April 28, 1988)  相似文献   

4.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

5.
The phylogenetic distribution of photosystem I-associated polypeptides was assessed by immunoblotting algal thylakoid membrane polypeptides with antisera generated against the P700-chlorophyll a protein (CC I) and a photosystem I light-harvesting chlorophyll-protein (LHC Ib). Polypeptides cross-reacting with the CC I apoprotein were found in 20 species representing four classes of unicellular algae. Polypeptides sharing antigenicity with spinach LHC Ib were observed only in algal species containing chlorophyll b. Tetraselmis spp. (Pleurastrophyceae), rich in chlorophyll b (Chl a:b 1.2), exhibited marked heterogeneity in the composition of their CC I and LHC Ib cross-reactive polypeptides. When immunoblotted with antisera against CC I, all Tetraselmis clones examined exhibited a 25-kD polypeptide in greater abundance than the 58-kD CC I apoprotein characteristic of higher plants and other green algal thylakoids. Three Tetraselmis clones (RG 6, RG 11, and RG 12) exhibited an 81-kD polypeptide with strong antigenicity toward the LHC Ib antisera, in contrast to the 17- to 24-kD cross-reactive polypeptides found in spinach, green algae, and one Tetraselmis clone (RG 5). Associated with the unique photosystem I polypeptide composition in Tetraselmis spp., Chl: P700 ratios for the group are 2–5 times greater than those observed for higher plants or other green algae. The chlorophyll b enrichment, unusual composition of photosystem I cross-reactive polypeptides, and heterogeneity of these polypeptides within isolates of Tetraselmis might make this genus useful for investigations of the functional organization of chlorophyll b in light-harvesting systems. These features also support the view of an alternative phyletic origin for the Pleurastrophyceae.  相似文献   

6.
Isolated photosystem I (PSI)-110 particles, prepared using a minimal concentration of Triton X-100 [J. E. Mullet, J. J. Burke, and C. J. Arntzen (1980) Plant Physiol. 65, 814-822] and further subjected to short-term solubilization with sodium dodecyl sulfate (SDS), were resolved into four pigment-containing bands on polyacrylamide gel electrophoresis (PAGE). We have identified these in order of increasing electrophoretic mobility as being (a) CPIa, (b) CPI, (c) the light-harvesting complex of photosystem I (LHC-I), and (d) a free pigment-zone. LHC-I had an absorption maximum in the red at 668-669 nm and a shoulder at 650 nm, which was resolved by its first-derivative spectrum to indicate the presence of chlorophyll b. LHC-I exhibited a 77 degrees K fluorescence emission maximum at 729-730 nm. The 77 degrees K fluorescence emission maxima of CPIa and CPI, excised from the gel, were at 729 and 722 nm, respectively. The LHC-I band, excised from the gel and rerun on dissociating SDS-PAGE, was resolved into two polypeptide doublets of 24-22.5 and 21-20.5 kDa. The CPIa band under similar conditions was resolved into polypeptides of 68, 24, 22.5, 21, 20.5, 19, 15, and 14 kDa; on the contrary, CPI contained only the 68-kDa polypeptide. When intact thylakoids were subjected to "nondenaturing" SDS-PAGE, LHC-I comigrated with an oligomeric form (dimer) of the light-harvesting chlorophyll a/b pigment-protein that preferentially serves photosystem II (LHCP-II). When this combined LHC-I/LHCP-II pigment-protein band was prepared by SDS-PAGE from isolated stroma lamellae, it exhibited a long-wavelength fluorescence band near 730 nm at 77 degrees K. When a similar preparation was obtained from sucrose density gradients containing SDS [J. Argyroudi-Akoyunoglou and H. Thomou (1981) FEBS Lett. 135, 171-181], it was found to be enriched in a 21-kDa polypeptide. The data suggest that the 21-kDa polypeptide of LHC-I is the chlorophyll-containing polypeptide responsible for the long-wavelength fluorescence of LHC-I; other polypeptides in the complex (20.5, 22.5, and 24 kDa) presumably bind chlorophyll and also serve an antennae function.  相似文献   

7.
The chlorina-f2 mutant of barley (Hordeum vulgare L.) contains no chlorophyll b in its light-harvesting antenna, whereas the chlorina-103 mutant contains approximately 10% of the chlorophyll b found in wild-type. The absolute chlorophyll antenna size for Photosystem-II in wild-type, chlorina-103 and chlorina-f2 mutant was 250, 58 and 50 chlorophyll molecules, respectively. The absolute chlorophyll antenna size for Photosystem-I in wild-type, chlorina-103 and chlorina-f2 mutant was 210, 137 and 150 chlorophyll molecules, respoectively. In spite of the smaller PS I antenna size in the chlorina mutants, immunochemical analysis showed the presence of polypeptide components of the LHC-I auxiliary antenna with molecular masses of 25, 19.5 and 19 kDa. The chlorophyll a-b-binding LHC-II auxiliary antenna of PS II contained five polypeptide subunits in wild-type barley, termed a, b, c, d and e, with molecular masses of 30, 28, 27, 24 and 21 kDa, respectively. The polypeptide composition of the LHC-II auxiliary antenna of PS II was found to be identical in the two mutants, with only the 24 kDa subunit d present at an equal copy number per PS II in each of the mutants and in the wild-type barley. This d subunit assembles stably in the thylakoid membrane even in the absence of chlorophyll b and exhibits flexibility in its complement of bound chlorophylls. We suggest that polypeptide subunit d binds most of the chlorophyll associated with the residual PS II antenna in the chlorina mutants and that is proximal to the PS II-core complex.Abbreviations CP chlorophyll-protein - LHC the chlorophyll a-b binding light-harvesting complex - LHC-II subunit a the Lhcb4/5 gene product - subunit b the Lhcb1 gene product - subunit c Lhcb2 the gene product - subunit d the Lhcb3 gene product - subunit e the Lhcb6 gene product - PMSF phenylmethane sulphonyl fluoride - RC reaction center - QA the primary quinone electron acceptor of Photosystem-II - P700 the reaction center of PS I  相似文献   

8.
Polypeptides of the three major chlorophyll a + b protein complexes were detected in a chlorophyll-b-less barley mutant (chlorina f2) using immunological techniques. Antibodies to CP Ia, a photosystem I complex containing both the reaction center (CP I) and the chlorophyll a + b antenna (LHCI), detected substantial amounts of LHCI polypeptides in mutant thylakoids. Some polypeptides of the two photosystem-II-associated chlorophyll a + b complexes, CP 29 and LHCII, were also detected using antibodies raised against these complexes. The CP 29 apoprotein and the minor 25-kDa polypeptide of LHCII were present in amounts that could be seen by Coomassie blue staining. In contrast, the two major polypeptides of LHCII were greatly diminished in amount, and one of them may be completely absent. These data suggest that the absence of chlorophyll b may have differing effects on the synthesis, processing or turnover of the various chlorophyll a + b binding polypeptides. They also show that these polypeptides can be inserted into thylakoids in the absence of Chl b, and that significant amounts of some of them are accumulated in the mutant thylakoids.  相似文献   

9.
In the oxygen-evolving photosystem-II (PSII) of higher plantchioroplasts and green algae, most of the light-harvesting functionis performed by the chlorophyll (Chl) a-b-protein complex (LHC-II).On the average, the LHC-II contains about 210 Chl (a+b) moleculesper PSII reaction center. The polypeptide composition, copynumber and organization of assembly in the LHC-II complex arenot fully understood at present. This work utilized the chlorinaf2 mutant of barley (lacking Chl b and having a LHC-II antennaof only 13 Chl a molecules) to determine the organization andstability of assembly of proteins in the LHC-II. High-resolutionSDS-PAGE and immunoblot analysis showed the presence of fourmain constitutive polypeptides in the wild-type LHC-II (termedhere subunits a, b, c and d) with molecular masses in the range30–25 kDa. Of those, only subunit d (a 25 kDa polypeptide)was found to occur at an equal copy number per PSII reactioncenter in both wild-type and in the Chl b-less chlorina f2 mutant.All other subunits were either absent or existed in much loweramounts in the mutant. Subunit d is a polypeptide constituentof the major Chl-protein subcomplex (CPII) of the LHC-II. Itis stably incorporated in the thylakoid membrane in the absenceof Chl b and probably binds the 13 Chl a molecules in the residualLHC-II antenna of the chlorina f2 mutant. We propose that, ofall LHC-II polypeptides, subunit d is most proximal to the PSIIcore and may serve as a linker in the process of excitationenergy transfer from the bulk LHC-II to the PSII reaction centerin chloroplasts. (Received February 25, 1992; Accepted May 12, 1992)  相似文献   

10.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

11.
12.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

13.
14.
15.
A positively charged amino acid sequence, located on the NH2 terminus of the polypeptides of the chlorophyll a/b light harvesting complex, stabilizes thylakoid membrane adhesion. Threonine residues in this segment are the site of light-induced, reversible phosphorylation; this covalent modification results in changes in excitation-energy distribution in chloroplast membranes. Removal of the positively charged peptide by treatment with trypsin or chemical modification of amino acids in the sequence disrupts thylakoid adhesion and inhibits regulation of excitation-energy distribution. Purified preparations of the chlorophyll a/b light harvesting complex consist of 2 major polypeptides of 27 and 26 kDa and 2 minor polypeptides of 29 and 25 kDa (based upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Trypsin treatment of the isolated chlorophyll proteins decreases the apparent molecular mass of the 27- and 26-kDa polypeptides by 1-1.5 kDa and releases 3 peptides; [Lys, Arg], Ser-Ala-Thr-Thr-Lys-Lys, and Ser-Ala-Thr-Thr-Lys. These peptides probably form the overlap sequence, [Lys, Arg]-Ser-Ala-Thr-Thr-Lys-Lys. The polypeptides of the chlorophyll a/b light-harvesting complex were separated by isoelectric focusing into 5 chlorophyll protein fractions which had isoelectric points between 4.0 and 4.55. The 27-kDa polypeptides had an isoelectric point of 4.3, and bound 11 chlorophyll molecules/polypeptide.  相似文献   

16.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

17.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   

18.
Tiago Barros 《BBA》2009,1787(6):753-2925
The chlorophyll a/b light-harvesting complex of photosystem II (LHC-II) collects most of the solar energy in the biosphere. LHC-II is the prototype of a highly conserved family of membrane proteins that fuels plant photosynthesis in the conversion of excitation energy into biologically useful chemical energy. In addition, LHC-II plays an important role in the organisation of the thylakoid membrane, the structure of the photosynthetic apparatus, the regulation of energy flow between the two photosystems, and in the controlled dissipation of excess excitation energy under light stress. Our current understanding of the sophisticated mechanisms behind each of these processes has profited greatly from the progress made over the past two decades in determining the structure of the complex. This review presents the developments and breakthroughs that ultimately lead to the high-resolution structure of LHC-II. Based on an alignment of the remarkably well engineered and highly conserved LHC polypeptide, we propose several key features of the LHC-II structure that are likely to be present in all members of the LHC family. Finally, some recently proposed mechanisms of energy-dependent non-photochemical quenching (NPQ) are examined from a structural perspective.  相似文献   

19.
We investigated the diurnal fluctuation in the composition of the light harvesting chlorophyll a/b antenna of photosystem II in young wheat (Triticum aestivum) leaves grown under periodic day/night irradiation. By means of gel electrophoresis of the polypeptides of thylakoid membranes, we determined the amount of 25 kDa and 27 kDa polypeptides, which are the main components of the peripheral and inner antenna subpopulations, respectively. Our data show a preferential fluctuation in the amount of the 25 kDa protein relative to the 27 kDa polypeptide, in parallel to the fluctuation in the amount of chlorophyll a/b antenna of photosystem II, which suggests that the peripheral antenna plays a role in the diurnal adjustment of the antenna size.  相似文献   

20.
A full-length cDNA clone encoding the PSI-F subunit of barley photosystem I has been isolated and sequenced. The open reading frame encodes a precursor polypeptide with a deduced molecular mass of 24837 Da. The barley PSI-F precursor contains a bipartite presequence with characteristics similar to the presequences of proteins destined to the thylakoid lumen. In vitro import studies demonstrate that an in vitro synthesized precursor is transported across the chloroplast envelope and directed to the thylakoid membrane, where it accumulates in a protease-resistant form. Incubation of the precursor with a chloroplast stromal extract results in processing to a form intermediate in size between the precursor and mature forms. Hydrophobicity analysis of the barley PSI-F protein reveals a hydrophobic region predicted to be a membrane spanning -helix. The hydrophobic nature of PSI-F combined with a bipartite presequence is unusual. We postulate that the second domain in the bipartite presequence of the PSI-F precursor proteins is required to ensure the proper orientation of PSI-F in the thylakoid membrane. The expression of the PsaF gene is light-induced similar to other barley photosystem I genes.Abbreviations 16K 23K and 33K proteins, the 16 kDa, 23 kDa and 33 kDa subunits of the photosystem II oxygen-evolving complex - PSI-N and PSI-F photosystem I subunit N and F - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号