首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of caseins on the rheological properties of κ-carrageenan-calcium gel was investigated by measuring the gel breaking strength. The existence of β-casein in the system promoted the gelation of κ-carrageenan in the presence of calcium ion. Beta-casein increased the strength of calcium gels of κ-carrageenan with increasing NaCl concentration up to 80 mM and strengthened the κ-carrageenan-calcium gel at neutral pH. The values obtained from the slopes of the logarithmic plots of the gel strength versus concentration were 2.15 for κ-carrageenan gel and 2.27 for a β-casein-κcarrageenan mixture gel, suggesting that β-casein may participate in the gelation of κ-carrageenan through the mediation of calcium ions.  相似文献   

2.
The chain association of pectic molecules with different levels and patterns of esterification during calcium-induced gelation was studied by methods such as light scattering, viscometry, and determination of calcium activity coefficient and of calcium transport parameter. A gel point can be determined, assuming a power law including a critical ratio (equivalent concentration of calcium ions/pectin carboxylic groups) and quasi-critical exponents varying in the range 0.50–1.26. The values of these critical parameters were discussed as a function of polymer concentration, of level and pattern of esterification, and of the nature of the divalent counterion. The lower these values are, the better, apparently, the gel-forming ability of the pectins is.  相似文献   

3.
The presence of an optimum counter-ion concentration in calcium-induced κ-carrageenan gels at low polymer concentrations of 5 and 10 g/l is observed. At approximately the stoicheometric molar ratio of 1 calcium per carrageenan sulphate, a gel with high elastic modulus, high optical clarity and fine network structure is observed. On further increase of counter-ion concentration beyond this optimum, elastic modulus decreases significantly associated with sharp increase in the gels turbidity together with a network characterised with coarse and large-pore mesh.

The quite complete characterisation of the various gel networks both mechanically by ways of oscillatory and static rheology and optically by turbidimetry and cryo-SEM shows that the extensive structural charge neutralisation of the polysaccharide by divalent calcium ions is responsible for a marked aggregation of the polymer strands reminiscent of precipitation. At lower counter-ion to polymer ratios, onset of gelation might prevent such phase separation.  相似文献   


4.
In-situ gelation of semidilute xanthan solutions with trivalent chromium, aluminum or iron ions was studied by rheology and UV-spectroscopy. Measurements of the elastic modulus of xanthan gel cylinders prepared by dialysis against the complexing ion at pH values from 2 to 6 indicate that monomeric species of the ion are ineffective, whereas dimeric or higher oligomeric species are effective in crosslinking the polysaccharide. When chromium was used as the crosslinking species, the dependence of the gelation rate on the ionic concentration followed a power law with a coefficient of 1·7. The gelation time and the gelation rate were found to extrapolate to zero at 1 m Cr for 2·5 mg/ml xanthan. The limiting concentration of xanthan needed for gelation with 5 m Cr(III) at 20°C was estimated as 0·35 mg/ml. This critical xanthan concentration is close to the overlap concentration c* estimated from the experimentally determined intrinsic viscosity [η] using c* = 1·4/[η]. An apparent activation energy for crosslinking of xanthan was calculated as Ea = 42 kJ/mol and Ea = 108 kJ/mol for Cr and Al ions, respectively. The fractal dimensionality of xanthan-Cr at the sol-gel transition was estimated as 1·3 applying the Chambon-Winter criterion for gelation, thus indicating that this gelation criterion is applicable also to stiff-chain polysaccharides such as xanthan.  相似文献   

5.
Rheological characteristics during chemical gelation with the cross-linker ethylene glycol diglycidyl ether (EGDE) of semidilute aqueous solutions of hydroxyethylcellulose (HEC) and of two hydrophobically modified analogues (HM-1-HEC and HM-2-HEC) are reported. In addition, rheological features of gelling samples (dextran and its hydrophobically modified analogue (HM-dextran)) of a different structure have been examined. Some swelling experiments on these gels in the postgel region are also reported. The gelation time of the hydroxyethylcellulose systems decreased with increasing cross-linker concentration, and incorporation of hydrophobic units of HEC resulted in a slower gelation. The time of gelation for the dextran system was only slightly affected by the incorporation of hydrophobic groups (HM-dextran). At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional to omegan') and loss modulus (G' proportional to omegan') was observed for all gelling systems with n' = n' = n. The attachment of hydrophobic moieties on the dextran chains had virtually no impact on the value of n (n = 0.77), and the percolation model describes the incipient dextran gels. By increasing the number of hydrophobic groups of the HEC polymer, the value of n for the corresponding incipient gel drops significantly, and the value of the gel strength parameter increases strongly. Incorporation of hydrophobic units in the HEC chains promotes the formation of stronger incipient gels because of the contribution from the hydrophobic association effect. The frequency dependence of the complex viscosity reveals that all the investigated gels become more solidlike in the postgel domain. Far into the postgel region, the hydrophobicity of HEC plays a minor role for the strength of the gel network, whereas the values of the complex viscosity are significantly higher for HM-dextran than for the corresponding dextran gel. The swelling experiments on HEC, HM-1-HEC, and HM-2-HEC systems disclose that the degree of swelling of the postgels in water is quite different, depending on the relative distance from the gel point at which the cross-linker reaction is quenched. At a given distance from the gel point, the swelling of the HEC gel is less pronounced than for the corresponding hydrophobically modified samples. At this stage, the swelling of the HM-dextran gel is stronger than for the dextran gel.  相似文献   

6.
Addition of trivalent chromic ions to xanthan solutions gives rise to gel formation. The dynamic shear storage and loss moduli (0.01 – 10 rad/s) of xanthan solutions with polymer concentrations ranging from 1 to 7 mg/ml and Cr3+ concentrations ranging from 0 to 50 m have been studied. It is found that the rate of gel formation is strongly dependent on the Cr3+ concentration, but to a much smaller extent on the xanthan concentration. The gelation time is less than 1 h for 50 m Cr3+ and about 40 h for 2 m Cr3+. It is found that the minimum Cr3+ concentration needed to give gelation of 1–7 mg/ml xanthan is 1–2 m .  相似文献   

7.
Alginate gels produced by an external or internal gelation technique were studied so as to determine the optimal bead matrix within which DNA can be immobilized for in vivo application. Alginates were characterized for guluronic/mannuronic acid (G/M) content and average molecular weight using 1H-NMR and LALLS analysis, respectively. Nonhomogeneous calcium, alginate, and DNA distributions were found within gels made by the external gelation method because of the external calcium source used. In contrast, the internal gelation method produces more uniform gels. Sodium was determined to exchange for calcium ions at a ratio of 2:1 and the levels of calcium complexation with alginate appears related to bead strength and integrity. The encapsulation yield of double-stranded DNA was over 97% and 80%, respectively, for beads formed using external and internal calcium gelation methods, regardless of the composition of alginate. Homogeneous gels formed by internal gelation absorbed half as much DNAse as compared with heterogeneous gels formed by external gelation. Testing of bead weight changes during formation, storage, and simulated gastrointestinal (GI) conditions (pH 1.2 and 7.0) showed that high alginate concentration, high G content, and homogeneous gels (internal gelation) result in the lowest bead shrinkage and alginate leakage. These characteristics appear best suited for stabilizing DNA during GI transit.  相似文献   

8.
The influence of calcium ions on the polymerization induced in fibrinogen solutions by thrombin and by Reptilase has been investigated by meansof static and dynamic light scattering in combination with measurements of the release of the fibrinopeptide A. The calcium concentration was varied in the range between 0.3 and 103 calcium ions per fibrinogen molecule. The enzyme concentration was chosen sufficiently low so that it was possible to make quantitative observations as a function of time, in particular, beforethe onset of gelation. Likewise, the influence of calcium ions on the enzymatically induced polymerization of fragment X was studied. The results indicate that there are at least three mechanisms by which calcium can influence the evolution of the polymer system on the path to gelation and clotting. Which mechanism dominates depends upon the calcium concentration.  相似文献   

9.
Rheological changes occurring during the gelation of low methoxy pectins in the presence of calcium ions were investigated. The onset of gelation was found to correspond to the same macroscopic rheology (i.e. value of G') whatever the gelling conditions. Sol-gel diagrams for calcium pectin systems were mapped out in terms of calcium level, temperature and pectin concentration. The thermodynamic parameters for the cross-linking process were derived.  相似文献   

10.
It has been previously demonstrated that calcium alginate gels prepared by dialysis often exhibit a concentration inhomogeneity being the polymer concentration considerably lower in the center of the gel than at the edges. Inhomogeneity may be a preferred structure in microcapsules due to low porosity and higher stability so that it is interesting to evaluate the polymer gradient in spherically symmetrical small alginate beads (1.0-0.7 mm diameter) obtained in different conditions. In this paper, two complementary techniques have been used to investigate this aspect. The concentration gradient of alginate has been analyzed by measuring both the spatial distribution of calcium ions in sections of alginate gel spheres, by means of x-ray fluorescence spectroscopy, and the T2 relaxation behavior on intact gel beads using magnetic resonance microimaging. The experimentally determined gradients from three-dimensional gels provide data to reevaluate the parameter estimates in the recently reported mathematical model for alginate gel formation (A. Mikkaelsen and A. Elgsaeter, Biopolymers, 1995, Vol. 36, pp. 17-41). The model may account for the gels being less inhomogeneous when nongelling sodium or magnesium ions are added during gelation.  相似文献   

11.
Weng L  Chen X  Chen W 《Biomacromolecules》2007,8(4):1109-1115
The gelation kinetics of an in situ gelable hydrogel formulated from oxidized dextran (Odex) and N-carboxyethyl chitosan (CEC) was investigated rheologically. Both Schiff base mediated chemical and physical crosslinking account for its rapid gelation (30-600 s) between 5 and 37 degrees C. The correlation between gelation kinetics and hydrogel properties with Odex/CEC concentration, their feed ratio, and temperature were elucidated. The gelation time determined from crossing over of storage moduli (G') and loss moduli (G' ') was in good agreement with that deduced from frequency sweeping tests according to the Winter-Chambon power law. The power law exponents for a 2% (w/v) Odex/CEC solution (ratio 5:5) at the gel point was 0.61, which is in excellent agreement with the value predicted from percolation theory (2/3). Temperature dependence of gelation time for the same hydrogel formulation is well-described by an Arrhenius plot with its apparent activation energy calculated at 51.9 kJ/mol.  相似文献   

12.
Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels.  相似文献   

13.
Effect of degree of acetylation on gelation of konjac glucomannan   总被引:3,自引:0,他引:3  
Effect of the degree of acetylation (DA) on the gelation behaviors on addition of sodium carbonate for native and acetylated konjac glucomannan (KGM) samples with a DA range from 1.38 to 10.1 wt % synthesized using acetic anhydride in the presence of pyridine as catalyst was studied by dynamic viscoelastic measurements. At a fixed alkaline concentration (CNa), both the critical gelation times (tcr) and the plateau values of storage moduli (G'sat) of the KGM gels increased with increasing DA, while at a fixed ratio of alkaline concentrations to values of DA (CNa/DA), similar tcr and values independent of DA were observed. On the whole, increasing KGM concentration or temperature shortened the gelation time and enhanced the elastic modulus for KGM gel. The effect of deacetylation rate related to the CNa/DA on the gelation kinetics of the KGM samples was discussed.  相似文献   

14.
The swelling behavior of gelatin gels when immersed in buffer or in osmotically active solutions of dextran 500 has been studied, and the results can be described by means of the Flory-Rehner theory of the thermodynamic properties of three-dimensional network structures. The density of crosslinkages formed in the gel is found to be related to the concentration of gelatin at which gelation occurs. Values of rigidity moduli are estimated from the density of crosslinkages by use of the statistical thermodynamic theory of rubber elasticity. These values are in excellent agreement with direct measurements.  相似文献   

15.
The interaction of κ-carrageenan with locust bean gum and dextran has been studied by rheology, differential scanning calorimetry (DSC), and electron spin resonance spectroscopy (ESR). Rheological measurements show that the carrageenan gel characteristics are greatly enhanced in the presence of locust bean gum but not in the presence of dextran. Carrageenan/locust bean gum mixtures show two peaks in the dsc cooling curves. The higher temperature peak corresponds to the temperature of gelation and its intensity increases at the expense of the lower temperature peak as the proportion of locust bean gum in the mixture increases. Furthermore, the DSC heating curves show enhanced broadening when locust bean gum is present, indicating increased aggregation. These results are taken as evidence of carrageenan/locust bean gum association. The gelation process has also been followed by ESR using spin-labeled carrageenan. On cooling carrageenan solutions, an immobile component appears in the ESR spectra signifying a loss of segmental mobility consistent with chain stiffening due to the coil → helix conformational transition and helix aggregation. For carrageenan/locust bean gum mixtures, carrageenan ordering occurs at temperatures corresponding to the higher temperature DSC setting peak and the temperature of gelation. Similar studies using spin-labeled locust bean gum show that its mobility remains virtually unaffected during the gelation process. It is evident, therefore, that carrageenan and locust bean gum interact only weakly. It is proposed that at low carrageenan concentrations the gel network consists of carrageenan helices cross-linked by locust bean gum chains. At high carrageenan concentrations the network is enhanced by the additional self-aggregation of the “excess” carrageenan molecules. For carrageenan/dextran mixtures, only one peak is observed in the dsc cooling curves. The onset of gelation shifts to higher temperatures only at very high (20%) dextran concentrations and this is attributed to volume exclusion effects. Furthermore, there is no enhanced broadening of the peaks in the DSC heating curves as for the carrageenan/locust bean gum systems. It is therefore concluded that carrageenan/dextran association does not occur. The difference in behavior between locust bean gum and dextran is attributed to the greater flexibility of the dextran chains. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Influence of low-methoxyl pectin (LM pectin) and calcium ions (3 mM) on mechanical behavior and microstructure of bovine serum albumin (BSA) gels (pH 6.8, in 0.1 M NaCl) was evaluated. Protein and LM pectin concentrations were fixed at 2, 4, and 8 wt % and 0.21, 0.43, and 0.85 wt %, respectively. Rheological measurements and confocal laser scanning microscopy coupled with texture image analysis by use of the co-occurrence method were performed. Heat treatment of BSA/LM pectin mixtures induced protein gelation and a phase separation process between the two biopolymers, which was kinetically trapped. Calcium ions induced pectin gelation and modified BSA gel properties. Depending on biopolymer concentrations, a balance between pectin and/or protein gel contribution on final gel strength exists. The microstructures of the mixed systems in the presence of calcium can be interpreted as interpenetrated structures. Texture image analysis allowed one to classify more precisely the different microstructures observed in relation with mechanical properties.  相似文献   

17.
Svante Nilsson 《Biopolymers》1992,32(10):1311-1315
The effect of mixed salt (1:1 and 2:1 electrolyte) on alginate (a charged polysaccharide) gel formation is analyzed within the Poisson-Boltzmann cell model utilizing experimental data from the literature. The concentration of calcium ions needed to induce gelation of alginate goes through a minimum as 1 : 1 electrolyte is added. The theoretical model can account for this in a qualitative manner. According to the theoretical model, however, it is only in terms of concentrations that the minimum exists. In terms of chemical potentials for the ions (or salt) the curve is monotonic. The effect is due to the highly nonideal interactions in polyelectrolyte solutions when the total salt content is low. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
Mo Y  Kubota K  Nishinari K 《Biorheology》2000,37(5-6):401-408
It was found that solutions of calcium hyaluronate (CaHA) (0.1 to approximately 0.5 wt%) could form a gel by mixing with solutions of sodium type gellan (0.1 to approximately 0.5 wt%), although neither polymer by itself forms a gel at low concentrations (0.1 to approximately 0.5 wt% in this experiment). The rheological properties of CaHA-gellan mixtures were investigated by dynamic and steady shear measurements. Both storage shear modulus G' and loss shear modulus G' for CaHA-gellan mixtures increased with increasing time, and tended to an equilibrium value after 1 h. After reaching steady values of G' and G", the frequency dependence of G' and G' was observed. G' was always larger than G' in the accessible frequency range from 10(-2) to 10(2) rad/s. The effects of pH and calcium ions were examined. Gel formation of the mixtures was promoted by decreasing pH and adding from 0.01 to 0.1 M calcium ions, but excessive calcium ions weakened the gel.  相似文献   

19.
A variant ofLactobacillus hilgardii was immobilized by its own production of dextran gel, forming grains. The best rate of weight increase of the gel in continuous fermentation was 16.3±3.3%/h, at pH 4.8±0.1 and with a dilution rate of 0.22 to 0.26/h. Observation by scanning electron microscopy located most of the bacteria as microcolonies on the surface. A similar arrangement appeared in calcium alginate beads. The best population density (1010 cells/g) was obtained in grains at pH 5.8, after 30h. At a similar pH value, 4.8, the growth rate was higher in alginate beads than in dextran gel but the final population density was approximately the same. Acidification rate increased faster with mixed gel at pH 5.2 than with dextran at pH 5.8.  相似文献   

20.
The steady flow viscosity at shear rates 0 to 120 sec-1 and dynamic viscoelasticity at frequencies 0.02 to 0.8 Hz were determined for aqueous suspensions of uniform polystyrene microspheres of 1.0 micron diameter. Rheological properties of the microsphere suspensions were Newtonian for particle concentrations up to 32%. By introducing dextran and calcium chloride into the particle suspensions, non-Newtonian behavior was produced similar to that observed for human blood. The cooperative effects of dextran and calcium ions promoted aggregation of particles at a concentration as low as 12%. Thus, a suspension of uniform sized spherical polystyrene particles in aqueous solution of dextran may be made to mimic blood by controlling the surface charge on the polystyrene spheres using addition of calcium ions to the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号