首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin alpha2beta1 is a major receptor required for activation and adhesion of platelets, through the specific recognition of collagen by the alpha2-I domain (alpha2-I), which binds fibrillar collagen via Mg(2+)-bridged interactions. The crystal structure of a truncated form of the alpha2-I domain, bound to a triple helical collagen peptide, revealed conformational changes suggestive of a mechanism where the ligand-bound I domain can initiate and propagate conformational change to the full integrin complex. Collagen binding by alpha2-I and fibrinogen-dependent platelet activity can be inhibited by snake venom polypeptides. Here we describe the inhibitory effect of a short cyclic peptide derived from the snake toxin metalloprotease jararhagin, with specific amino acid sequence RKKH, on the ability of alpha2-I to bind triple helical collagen. Isothermal titration calorimetry measurements showed that the interactions of alpha2-I with collagen or RKKH peptide have similar affinities, and NMR chemical shift mapping experiments with (15)N-labeled alpha2-I, and unlabeled RKKH peptide, indicate that the peptide competes for the collagen-binding site of alpha2-I but does not induce a large scale conformational rearrangement of the I domain.  相似文献   

2.
Snake venoms contain a number of heterodimeric C-type lectin-like proteins (CLPs) that interact specifically with components of the haemostatic system. EMS16 from the venom of Echis multisquamatus binds to the collagen receptor, integrin alpha2beta1, also known as glycoprotein (GP) Ia/IIa, and specifically inhibits collagen binding. Here we report the crystal structure of EMS16 in complex with recombinant integrin alpha2-I domain that plays a central role in collagen binding. The structure of the complex at 1.9 Angstrom resolution reveals that the collagen-binding site of the alpha2-I domain is covered completely by the bound EMS16. This blockage by EMS16 appears to spatially inhibit collagen binding to the alpha2-I domain. The bound alpha2-I domain adopts a closed conformation, which is seen in the absence of ligand, suggesting that EMS16 stabilizes a closed conformation corresponding to the less active structure of the alpha2-I domain. EMS16 does not directly bind to the manganese ion and residues of the metal ion-dependent adhesion site (MIDAS) of the alpha2-I domain, suggesting that EMS16 may have the potential to bind specifically to the alpha2-I domain in a metal ion-independent fashion.  相似文献   

3.
Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain.  相似文献   

4.
The interaction of platelets with collagen plays an important role in primary hemostasis. Glycoprotein Ia/IIa (GPIa/IIa, integrin alpha(2)beta(1)) is a major platelet receptor for collagen. The binding site for collagen has been mapped to the I domain within the alpha(2) subunit (GPIa). In order to assess the role of the alpha(2)-I domain structure in GPIa/IIa binding to collagen, a recombinant I domain (amino acids 126-337) was expressed in Escherichia coli. The alpha(2)-I protein bound human types I and III collagen in a saturable and divalent cation-dependent manner and was blocked by the alpha(2)beta(1) function blocking antibody 6F1. The alpha(2)-I protein inhibited collagen-induced platelet aggregation (IC(50) = 600 nM). Unexpectedly, 6F1, an antibody that fails to inhibit platelet aggregation in platelet-rich plasma, blocked the inhibitory effect of the alpha(2)-I protein. The alpha(2)-I protein was able to prevent platelet adhesion to a collagen surface exposed to flowing blood under low shear stress. Interestingly, it inhibited platelet adhesion to extracellular matrix at high shear stress. These results, taken together, provide firm evidence that GPIa/IIa directly mediates the first contact of platelets with collagen under both stirring and flow conditions.  相似文献   

5.
The I domain present within the alpha2 chain of the integrin alpha(2)beta(1) (GPIa/IIa) contains the principal collagen-binding site. Based on the crystal structure of the alpha2-I domain, a hypothetical model was proposed in which collagen binds to a groove on the upper surface of the I domain (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). We have introduced point mutations into 13 residues on the upper surface of the domain. Recombinant mutant proteins were assayed for binding to monoclonal antibodies 6F1 and 12F1, to collagen under static conditions, and for the ability to retain adhesive activity under flow conditions. The mutations to residues surrounding the metal ion-dependent adhesion site that caused the greatest loss of collagen binding under both static and flow conditions are N154S in the betaA-alpha1 turn, N190D in the betaB-betaC turn, D219R in the alpha3-alpha4 turn, and E256V and H258V in the betaD-alpha5 turn. Mutation in one of the residues that coordinate the metal binding, S155A, completely lost the adhesive activity under flow but bound normally under static conditions, whereas the mutation Y285F had the converse effect. We conclude that the upper surface of the domain, including the metal ion-dependent adhesion site motif, defines the collagen recognition site.  相似文献   

6.
The multimeric glycoprotein von Willebrand factor (VWF) mediates platelet adhesion to collagen at sites of vascular damage. The binding site for collagen types I and III is located in the VWF-A3 domain. Recently, we showed that His(1023), located near the edge between the "front" and "bottom" faces of A3, is critical for collagen binding (Romijn, R. A., Bouma, B., Wuyster, W., Gros, P., Kroon, J., Sixma, J. J., and Huizinga, E. G. (2001) J. Biol. Chem. 276, 9985-9991). To map the binding site in detail, we introduced 22 point mutations in the front and bottom faces of A3. The mutants were expressed as multimeric VWF, and binding to collagen type III was evaluated in a solid-state binding assay and by surface plasmon resonance. Mutation of residues Asp(979), Ser(1020), and His(1023) nearly abolished collagen binding, whereas mutation of residues Ile(975), Thr(977), Val(997), and Glu(1001) reduced binding affinity about 10-fold. Together, these residues define a flat and rather hydrophobic collagen-binding site located at the front face of the A3 domain. The collagen-binding site of VWF-A3 is distinctly different from that of the homologous integrin alpha(2) I domain, which has a hydrophilic binding site located at the top face of the domain. Based on the surface characteristics of the collagen-binding site of A3, we propose that it interacts with collagen sequences containing positively charged and hydrophobic residues. Docking of a collagen triple helix on the binding site suggests a range of possible engagements and predicts that at most eight consecutive residues in a collagen triple helix interact with A3.  相似文献   

7.
Divalent cations stabilize the alpha 1 beta 1 integrin I domain.   总被引:1,自引:0,他引:1  
Recent structural and functional analyses of alpha integrin subunit I domains implicate a region in cation and ligand binding referred to as the metal ion-dependent adhesion site (MIDAS). Although the molecular interactions between Mn2+ and Mg2+ and the MIDAS region have been defined by crystallographic analyses, the role of cation in I domain function is not well understood. Recombinant alpha 1 beta 1 integrin I domain (alpha1-I domain) binds collagen in a cation-dependent manner. We have generated and characterized a panel of antibodies directed against the alpha1-I domain, and selected one (AJH10) that blocks alpha 1 beta 1 integrin function for further study. The epitope of AJH10 was localized within the loop between the alpha 3 and alpha 4 helices which contributes one of the metal coordination sites of the MIDAS structure. Kinetic analyses of antibody binding to the I domain demonstrate that divalent cation is required to stabilize the epitope. Denaturation experiments demonstrate that cation has a dramatic effect on the stabilization of the I domain structure. Mn2+ shifts the point at which the I domain denatures from 3.4 to 6.3 M urea in the presence of the denaturant, and from 49.5 to 58.6 degrees C following thermal denaturation. The structural stability provided to the alpha1-I domain by divalent cations may contribute to augmented ligand binding that occurs in the presence of these cations.  相似文献   

8.
Von Willebrand factor (vWF) is a multimeric glycoprotein that mediates platelet adhesion and thrombus formation at sites of vascular injury. vWF functions as a molecular bridge between collagen and platelet receptor glycoprotein Ib. The major collagen-binding site of vWF is contained within the A3 domain, but its precise location is unknown. To localize the collagen-binding site, we determined the crystal structure of A3 in complex with an Fab fragment of antibody RU5 that inhibits collagen binding. The structure shows that RU5 recognizes a nonlinear epitope consisting of residues 962-966, 981-997, and 1022-1026. Alanine mutants were constructed of residues Arg(963), Glu(987), His(990), Arg(1016), and His(1023), located in or close to the epitope. Mutants were expressed as fully processed multimeric vWF. Mutation of His(1023) abolished collagen binding, whereas mutation of Arg(963) and Arg(1016) reduced collagen binding by 25-35%. These residues are part of loops alpha3beta4 and alpha1beta2 and alpha-helix 3, respectively, and lie near the bottom face of the domain. His(1023) and flanking residues display multiple conformations in available A3-crystal structures, suggesting that binding of A3 to collagen involves an induced-fit mechanism. The collagen-binding site of A3 is located distant from the top face of the domain where collagen-binding sites are found in homologous integrin I domains.  相似文献   

9.
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.  相似文献   

10.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.  相似文献   

11.
The collagens are recognized by the alphaI domains of the collagen receptor integrins. A common structural feature in the collagen-binding alphaI domains is the presence of an extra helix, named helix alphaC. However, its participation in collagen binding has not been shown. Here, we have deleted the helix alphaC in the alpha(2)I domain and tested the function of the resultant recombinant protein (DeltaalphaCalpha(2)I) by using a real-time biosensor. The DeltaalphaCalpha(2)I domain had reduced affinity for type I collagen (430 +/- 90 nM) when compared with wild-type alpha(2)I domain (90 +/- 30 nM), indicating both the importance of helix alphaC in type I collagen binding and that the collagen binding surface in alpha(2)I domain is located near the metal ion-dependent adhesion site. Previous studies have suggested that the charged amino acid residues, surrounding the metal ion-dependent adhesion site but not interacting with Mg(2+), may play an important role in the recognition of type I collagen. Direct evidence indicating the participation of these residues in collagen recognition has been missing. To test this idea, we produced a set of recombinant alpha(2)I domains with mutations, namely D219A, D219N, D219R, E256Q, D259N, D292N, and E299Q. Mutations in amino acids Asp(219), Asp(259), Asp(292), and Glu(299) resulted in weakened affinity for type I collagen. When alpha(2) D219N and D292N mutations were introduced separately into alpha(2)beta(1) integrin expressed on Chinese hamster ovary cells, no alterations in the cell spreading on type I collagen were detected. However, Chinese hamster ovary cells expressing double mutated alpha(2) D219N/D292N integrin showed remarkably slower spreading on type I collagen, while spreading on type IV collagen was not affected. The data indicate that alpha(2)I domain binds to type I collagen with a different mechanism than to type IV collagen.  相似文献   

12.
Collagen XVI is integrated tissue-dependently into distinct fibrillar aggregates, such as D-banded cartilage fibrils and fibrillin-1-containing microfibrils. In skin, the distribution of collagen XVI overlaps that of the collagen-binding integrins alpha1 beta1 and alpha2 beta1. Basal layer keratinocytes express integrin alpha2 beta1, whereas integrin alpha1 beta1 occurs in smooth muscle cells surrounding blood vessels, in hair follicles, and on adipocytes. Cells bearing the integrins alpha1 beta1 and alpha2 beta1 attach and spread on recombinant collagen XVI. Furthermore, collagen XVI induces the recruitment of these integrins into focal adhesion plaques, a principal step in integrin signaling. Of potential physiological relevance, these integrin-collagen XVI interactions may connect cells with specialized fibrils, thus contributing to the organization of fibrillar and cellular components within connective tissues. In cell-free binding assays, collagen XVI is more avidly bound by alpha1 beta1 integrin than by alpha2 beta1 integrin. Both integrins interact with collagen XVI via the A domain of their alpha subunits. A tryptic collagen XVI fragment comprising the collagenous domains 1-3 is recognized by alpha1 beta1 integrin. Electron microscopy of complexes of alpha1 beta1 integrin with this tryptic collagen XVI fragment or with full-length collagen XVI revealed a unique alpha1 beta1 integrin-binding site within collagen XVI located close to its C-terminal end.  相似文献   

13.
Four integrins, namely alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1), form a special subclass of cell adhesion receptors. They are all collagen receptors, and they recognize their ligands with an inserted domain (I domain) in their alpha subunit. We have produced the human integrin alpha(10)I domain as a recombinant protein to reveal its ligand binding specificity. In general, alpha(10)I did recognize collagen types I-VI and laminin-1 in a Mg(2+)-dependent manner, whereas its binding to tenascin was only slightly better than to albumin. When alpha(10)I was tested together with the alpha(1)I and alpha(2)I domains, all three I domains seemed to have their own collagen binding preferences. The integrin alpha(2)I domain bound much better to fibrillar collagens (I-III) than to basement membrane type IV collagen or to beaded filament-forming type VI collagen. Integrin alpha(1)I had the opposite binding pattern. The integrin alpha(10)I domain was similar to the alpha(1)I domain in that it bound very well to collagen types IV and VI. Based on the previously published atomic structures of the alpha(1)I and alpha(2)I domains, we modeled the structure of the alpha(10)I domain. The comparison of the three I domains revealed similarities and differences that could potentially explain their functional differences. Mutations were introduced into the alphaI domains, and their binding to types I, IV, and VI collagen was tested. In the alpha(2)I domain, Asp-219 is one of the amino acids previously suggested to interact directly with type I collagen. The corresponding amino acid in both the alpha(1)I and alpha(10)I domains is oppositely charged (Arg-218). The mutation D219R in the alpha(2)I domain changed the ligand binding pattern to resemble that of the alpha(1)I and alpha(10)I domains and, vice versa, the R218D mutation in the alpha(1)I and alpha(10)I domains created an alpha(2)I domain-like ligand binding pattern. Thus, all three collagen receptors appear to differ in their ability to recognize distinct collagen subtypes. The relatively small structural differences on their collagen binding surfaces may explain the functional specifics.  相似文献   

14.
The integrins alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1) are referred to as a collagen receptor subgroup of the integrin family. Recently, both alpha(1)beta(1) and alpha(2)beta(1) integrins have been shown to recognize triple-helical GFOGER (where single letter amino acid nomenclature is used, O = hydroxyproline) or GFOGER-like motifs found in collagens, despite their distinct binding specificity for various collagen subtypes. In the present study we have investigated the mechanism whereby the latest member in the integrin family, alpha(11)beta(1), recognizes collagens using C2C12 cells transfected with alpha(11) cDNA and the bacterially expressed recombinant alpha(11) I domain. The ligand binding properties of alpha(11)beta(1) were compared with those of alpha(2)beta(1). Mg(2+)-dependent alpha(11)beta(1) binding to type I collagen required micromolar Ca(2+) but was inhibited by 1 mm Ca(2+), whereas alpha(2)beta(1)-mediated binding was refractory to millimolar concentrations of Ca(2+). The bacterially expressed recombinant alpha(11) I domain preference for fibrillar collagens over collagens IV and VI was the same as the alpha(2) I domain. Despite the difference in Ca(2+) sensitivity, alpha(11)beta(1)-expressing cells and the alpha(11) I domain bound to helical GFOGER sequences in a manner similar to alpha(2)beta(1)-expressing cells and the alpha(2) I domain. Modeling of the alpha I domain-collagen peptide complexes could partially explain the observed preference of different I domains for certain GFOGER sequence variations. In summary, our data indicate that the GFOGER sequence in fibrillar collagens is a common recognition motif used by alpha(1)beta(1), alpha(2)beta(1), and also alpha(11)beta(1) integrins. Although alpha(10) and alpha(11) chains show the highest sequence identity, alpha(2) and alpha(11) are more similar with regard to collagen specificity. Future studies will reveal whether alpha(2)beta(1) and alpha(11)beta(1) integrins also show overlapping biological functions.  相似文献   

15.
The low-density lipoprotein receptor-related protein (LRP) is a large surface receptor that mediates binding and internalization of a large number of structurally and functionally unrelated ligands. The ligand binding sites are located in clusters of complement-type repeats (CR), where the general absence of mutual binding competition suggests that different ligands map to distinct sites. Binding of alpha(2)-macroglobulin-protease complexes to the LRP is mediated by the receptor binding domain (RBD) of alpha(2)-macroglobulin (alpha(2)M). To determine the major binding epitope(s) in the LRP, we generated a complete set of tandem CR proteins spanning the second cluster of CR domains, and identified a binding site for alpha(2)M in the N-terminal part of the cluster comprising CR3-CR6, using ligand blotting and surface plasmon resonance (SPR) analysis. The specific site involved in alpha(2)M recognition resides in the fourth CR domain, CR4, whereas another site is identified in CR5. An acidic epitope in CR4 is identified as important for binding alpha(2)M by mutagenesis and SPR analysis. The formation of the complex between the rat alpha(1)-macroglobulin RBD and CR domain pairs is characterized by analytical size-exclusion chromatography, which demonstrates a sufficiently strong interaction between the alpha(1)M RBD and CR34 or CR45 for the isolation of a complex.  相似文献   

16.
We have characterized the primary structure of a new sea urchin fibrillar collagen, the 5alpha chain, including nine repeats of the sea urchin fibrillar module in its N-propeptide. By Western blot and immunofluorescence analyses, we have shown that 5alpha is co-localized in adult collagenous ligaments with the 2alpha fibrillar collagen chain and fibrosurfin, two other extracellular matrix proteins possessing sea urchin fibrillar modules. At the ultrastructural level, the 5alpha N-propeptide is detected at the surface of fibrils, suggesting the retention of this domain in mature collagen molecules. Biochemical characterization of pepsinized collagen molecules extracted from the test tissue (the endoskeleton) together with a matrix-assisted laser desorption ionization time-of-flight analysis allowed us to determine that 5alpha is a quantitatively minor fibrillar collagen chain in comparison with the 1alpha and 2alpha chains. Moreover, 5alpha forms heterotrimeric molecules with two 1alpha chains. Hence, as in vertebrates, sea urchin collagen fibrils are made up of quantitatively major and minor fibrillar molecules undergoing distinct maturation of their N-propeptide regions and participating in the formation of heterotypic fibrils.  相似文献   

17.
Integrins alpha(1)beta(1) and alpha(2)beta(1) are two major collagen receptors on the surface of eukaryotic cells. Binding to collagen is primarily due to an A-domain near the N terminus of the alpha chains. Previously, we reported that recombinant A-domain of alpha(1)beta(1) (alpha(1)A) had at least two affinity classes of binding sites in type I collagen (Rich, R. L., et al. (1999) J. Biol. Chem. 274, 24906-24913). Here, we compared the binding of the recombinant A-domain of alpha(2)beta(1) (alpha(2)A) to type I collagen with that of alpha(1)A using surface plasmon resonance and showed that alpha(2)A exhibited only one detectable class of binding sites in type I collagen, with a K(D) of approximately 10 microm at approximately 3 binding sites per collagen molecule. We further demonstrated that alpha(1)A and alpha(2)A competed with each other for binding to type I collagen in enzyme-linked immunosorbent assay (ELISA), suggesting that the binding sites in collagen for the two A-domains overlap or are adjacent to each other. By using rotary shadowing, the complexes of alpha(1)A- and alpha(2)A-procollagen were visualized. Morphometric analyses indicated three major binding regions (near the N terminus, in the central part, and near the C terminus) along the type I procollagen molecule for both A-domains. The positions of the respective binding regions for alpha(1)A and alpha(2)A were overlapping with or adjacent to each other, consistent with the ELISA results. Analysis of the sequences of type I collagen revealed that GER or GER-like motifs are present at each of the binding regions, and notably, the central region contains the GFOGER sequence, which was previously identified as a high affinity site for both alpha(1)A and alpha(2)A (Knight, C. G., et al. (2000) J. Biol. Chem. 275, 35-40). Peptides containing GLOGERGRO (peptide I, near the N terminus), GFOGERGVQ (peptide II, central), and GASGERGPO (peptide III, near the C terminus) were synthesized. Peptides I and II effectively inhibited the binding of alpha(1)A and alpha(2)A to type I collagen, while peptide III did so moderately. The N-terminal site in type I collagen has the sequence GLOGER in all three chains. Thus, it seems that peptide I represents a newly discovered native high affinity site for alpha(1)A and alpha(2)A.  相似文献   

18.
Tom1 (Target of Myb1) is suggested to be involved in the transport of ubiquitinated proteins, through the interaction of its GAT (GGA and Tom1) domain with ubiquitin. Here, we demonstrate that the three-helix bundle of Tom1-GAT has two ubiquitin-binding sites recognizing the hydrophobic Ile44 surface of ubiquitin. The complex crystal structure demonstrates that the first site is a hydrophobic patch on helices alpha1 and alpha2. NMR and biochemical data revealed that the N-terminal half of helix alpha3 of Tom1-GAT constitutes the second, stronger binding site. The double-sided ubiquitin binding enhances the efficiency of recognition of ubiquitinated proteins by Tom1.  相似文献   

19.
20.
Integrin alpha2beta1 is the major receptor for collagens in human tissues, being involved in cell adhesion and the control of collagen and collagenase gene expression. The collagen binding site of alpha2beta1 has been localized to the alpha2 von Willebrand Factor type A (VWFA) domain (A-domain or I-domain) and the residues responsible for the interaction with collagen have been mapped. We report a study of alpha2 VWFA domain in which residue E318, which lies outside the collagen binding site, is mutated to tryptophan, showing that this is a gain-of-function mutation. Recombinant alpha2-E318W VWFA domain showed elevated and specific binding to collagen I compared with the wild-type. Side chain hydrophobicity was important for the gain-of-function as elevated binding was seen with E318I and E318Y, but not with E318R. The E318W mutation had additional effects on VWFA domain properties as alpha2-E318W VWFA domain differed from the wild-type in its cation preferences for ligand binding and in binding to monoclonal antibody JA203, which bound at a site distal to E318. The gain-of-function effect was not restricted to binding to collagen I as alpha2-E318W also showed elevated binding to collagen IV, collagen I C-propeptide, laminin and E-cadherin. Binding to these ligands was inhibited by collagen peptide containing the GFOGER motif, indicating that these bound to the VWFA domain by a similar mechanism to collagen I. These data indicate that residue E318 plays a novel and important role in modulating alpha2 VWFA domain--ligand binding and may be involved in the conformational changes associated with its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号